Toward Efficient Reinforcement Learning Under Non-Stationarity

Qingfeng Lan

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Qingfeng Lan, 2025

Abstract

Non-stationarity in reinforcement learning (RL) arises naturally from value bootstrapping, policy
iterations, and the resulting shifts in data distributions. These shifts lead to catastrophic forgetting,
unstable training, and inefficient learning, which are further exacerbated by limited resources. This
thesis addresses some of these challenges by developing novel algorithmic and architectural methods
that reduce catastrophic forgetting, enhance learning efficiency, and improve training robustness

under non-stationarity.

First, we propose memory-efficient RL algorithms that reduce reliance on large replay buffers
by consolidating knowledge to mitigate forgetting, achieving strong performance within constrained
memory budgets. Second, we investigate the role of neural network architecture in reducing forget-
ting and introduce elephant activation functions, which induce both sparse activations and gradi-
ents. This architectural modification significantly enhances resistance to forgetting and improves
learning performance. Third, we explore the potential of learning optimizers tailored for RL, ad-
dressing challenges such as non-independent and identically distributed update gradients with high
bias and variance. We present an effective meta-training framework that enables learned optimizers
to generalize across diverse tasks. Finally, we present a novel method to exploit reward functions
more effectively by incorporating reward gradients into policy gradient methods, without explicit
dynamics modeling. This approach improves sample efficiency and performance, complementing
the broader goal of efficient RL. Collectively, these contributions deepen the understanding of RL
under non-stationary and resource-constrained conditions, paving the way toward more adaptable,

efficient, and practical RL algorithms.

i

Preface

The chapters of this thesis are based on four papers. Specifically, Chapter 3 is based on Lan
et al. (2023) which is accepted by Transactions on Machine Learning Research in 2023. Chapter
4 is based on Lan and Mahmood (2023), accepted by Workshop on High-dimensional Learning
Dynamics of International Conference on Machine Learning in 2023. Moreover, Chapter 5 is based
on Lan et al. (2024), accepted by Reinforcement Learning Journal in 2024. Finally, Chapter 6 and
part of Chapter 2 are based on Lan et al. (2022) which is published on International Conference on

Artificial Intelligence and Statistics in 2022. The aforementioned papers are listed below.

¢ Qingfeng Lan, A. Rupam Mahmood, Shuicheng Yan, Zhongwen Xu. “Learning to Optimize
for Reinforcement Learning". Reinforcement Learning Journal, 2024.

¢ Qingfeng Lan, A. Rupam Mahmood. “Elephant Neural Networks: Born to Be a Continual
Learner". ICML Workshop on High-dimensional Learning Dynamics, 2023.

e Qingfeng Lan, Yangchen Pan, Jun Luo, A. Rupam Mahmood. “Memory-efficient Rein-
forcement Learning with Value-based Knowledge Consolidation". Transactions on Machine
Learning Research, 2023.

¢ Qingfeng Lan, Samuele Tosatto, Homayoon Farrahi, A. Rupam Mahmood. “Model-free
Policy Learning with Reward Gradients". International Conference on Artificial Intelligence

and Statistics, 2022.
Additionally, I have other publications not included in this thesis, which are listed below.

e Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Ru-

pam Mahmood, Richard S. Sutton. “Loss of Plasticity in Deep Continual Learning". Nature,

iii

2024.

Mohamed Elsayed, Qingfeng Lan, Clare Lyle, A. Rupam Mahmood. “Weight Clipping for
Deep Continual and Reinforcement Learning". Reinforcement Learning Journal, 2024.
Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A. Rupam Mahmood,
Doina Precup, Pan Xu. “More Efficient Randomized Exploration for Reinforcement Learning
via Approximate Sampling". Reinforcement Learning Journal, 2024.

Haque Ishfaq*, Qingfeng Lan*, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima Anand-
kumar, Kamyar Azizzadenesheli. “Provable and Practical: Efficient Exploration in Reinforce-
ment Learning via Langevin Monte Carlo". International Conference on Learning Represen-
tations, 2024.

Shibhansh Dohare, Qingfeng Lan, A. Rupam Mahmood. “Overcoming Policy Collapse in

Deep Reinforcement Learning". Furopean Workshop on Reinforcement Learning, 2023.

v

To my families

All knowledge is, in final analysis, history.
All sciences are, in the abstract, mathematics.

All judgements are, in their rationale, statistics.

— Calyampudi Radhakrishna Rao

vi

Acknowledgment

First and foremost, I am deeply grateful to my supervisor, Rupam Mahmood, for his invaluable
guidance, critical insights, and continuous support throughout the course of my PhD. His intellectual

rigor and professional standards have significantly shaped the direction and quality of my work.

I am also grateful to the members of my candidacy and thesis examining committees—Michael
Bowling, Martha White, Marc’Aurelio Ranzato, Dale Schuurmans, and Pierre-Luc Bacon—for their
valuable time, thoughtful engagement, and constructive feedback, all of which have significantly
contributed to the development of this thesis. Next, I would like to thank my collaborators, co-
authors, and internship mentors, whose expertise, support, and partnership have been integral to my
PhD journey: Shibhansh Dohare, J. Fernando Hernandez-Garcia, Parash Rahman, Richard Sutton,
Shuicheng Yan, Zhongwen Xu, Mohamed Elsayed, Clare Lyle, Haque Ishfaq, Yixin Tan, Yu Yang,
Jianfeng Lu, Doina Precup, Pan Xu, Anima Anandkumar, Kamyar Azizzadenesheli, Yangchen Pan,
Jun Luo, Samuele Tosatto, Homayoon Farrahi, Chao Gao, Rohan Chitnis, Alborz Geramifard,

Ta-Chu Kao, and Jorge Menendez.

I acknowledge the financial support provided by the University of Alberta and Alberta Inno-
vates, without which this research would not have been possible. I also acknowledge the broader
contributions of the digital age—the open accessibility of information and resources on the Inter-
net has been essential to both my research and daily life. On a personal note, I have found both

relaxation and inspiration through videos, films, dramas, and anime on Bilibili.

Finally, I wish to thank my families and friends for their valuable support and encouragement

throughout the ups and downs of this long journey.

vii

https://www.bilibili.com

Contents

1 Introduction 1
1.1 Motivation and Objective 1
1.2 Approaches and Contributions L 3

2 Background 6
2.1 Markov Decision Process 6
2.2 Reinforcement Learning 8

2.2.1 Value-Based Methods 9
2.2.2 Policy Gradient Methods 10
2.3 Deep Reinforcement Learning 21
2.3.1 Deep Q-Network 21
2.3.2 Proximal Policy Optimization 22
2.4 Catastrophic Forgetting 23
2.4.1 Definition 24
2.4.2 Understanding Catastrophic Forgetting via Training Dynamics 24
2.5 Knowledge Distillation L o 26
2.6 Meta-Gradient Methods 27

3 Memory-Efficient Reinforcement Learning with Value-Based Knowledge Consol-

idation 29
3.1 Understanding Forgetting from an Objective-Mismatch Perspective 30
3.2 Related Work L 33
3.2.1 Supervised Learning Lo 33
3.2.2 Reinforcement Learning Lo oL 34
3.3 MeDQN: Memory-Efficient Deep Q-Network 35
3.3.1 Knowledge Consolidation 35
3.3.2 Uniform State Sampling 37
3.3.3 Real State Sampling 40
3.4 Experiments L 41
3.4.1 The Effectiveness of Knowledge Consolidation 41
3.4.2 Balancing Learning and Remembering 43
3.4.3 Evaluation in Low-Dimensional Tasks 45
3.4.4 Evaluation in High-dimensional Tasks 47
3.4.5 An Ablation Study of Knowledge Consolidation 48
3.4.6 A Study of Robustness to Different Buffer Sizes 50
3.4.7 Additional Results in Atari Games 51
3.5 Conclusion 53

4 Efficient Reinforcement Learning by Reducing Forgetting with Elephant Activa-

tion Functions 54
4.1 Understanding the Success and Failure of Sparse Representation. 55
4.2 Obtaining Sparsity with Elephant Activation Functions 57

X

4.3 Related Work s 62

4.3.1 Architecture-Based Continual Learning 62
4.3.2 Sparsity in Deep Learning oo 63
4.3.3 Local Elasticity and Memorization 63
4.4 Experimentso e 64
4.4.1 Streaming Learning for Regression 65
4.4.2 Reinforcement Learning 68
4.5 Conclusion 75
Learning to Optimize for Reinforcement Learning 81
5.1 Learning to Optimize with Meta-Learning 83
5.2 Related Work 84
5.2.1 Optimization in Reinforcement Learning 84
5.2.2 Learning to Optimize in Supervised Learning 85
5.3 Issues in Learning to Optimize for Reinforcement Learning 87
5.3.1 The Agent-Gradient Distribution is Non-I1ID 87
5.3.2 A Vicious Spiral of Bilevel Optimization 88
5.4 Optim4RL: A Learned Optimizer for Reinforcement Learning 89
5.4.1 Pipeline Training 89
5.4.2 Improving the Inductive Bias of Learned Optimizers 90
5.5 Experiments 92
5.5.1 Learning an Optimizer for RL from Scratch 94
5.5.2 Toward a General-Purpose Learned Optimizer for RL 96

5.5.3 Achieving Robust Training and Strong Generalization

5.6 Conclusion

6 Model-free Policy Learning with Reward Gradients
6.1 Only Model-Based Methods Use Reward Gradients So Far
6.2 Reward Policy Gradient Theorem
6.3 A Reward Policy Gradient Algorithm Based on PPO
6.4 Experiments L
6.4.1 A Bias-Variance Analysis of the RPG Estimator
6.4.2 Benefits and Drawbacks of Reward Gradients
6.4.3 The Benefit of Knowing the Reward Function
6.4.4 Evaluation on MuJoCo Tasks,
6.5 Discussion e

6.6 Conclusion

7 Conclusion
7.1 Summary of Contributions L
7.2 Limitations and Future Directions

7.3 Final Discussion

References

X1

100

101

102

107

108

108

110

112

113

115

115

116

116

117

118

121

List of Tables

3.1

3.2

3.3

3.4

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

5.6

6.1

The hyper-parameters of different algorithms for tasks in Figure 3.5. 46
The hyper-parameters of different algorithms for MinAtar tasks in Figure 3.6. 49

An ablation study of knowledge consolidation for MeDQN(R) with different buffer

SIZES. « v v e e e e e e a0
A study of robustness to different buffer sizes. oL, 50
The function sparsity and gradient sparsity of various activation functions. 58

The test MSEs of various methods in streaming learning for a simple regression task. 66

The performance comparison of DQN and Rainbow with different activation functions

across 10 Atari tasks.o 72
The detailed settings of gridworlds. oL 93
The performance of Optim4RL with and without pipeline training. 96
The reward scales of gridworlds used for learning a general-purpose optimizer. 97
The performance of Optim4RL with different GAE A values in two gridworlds. . . . 98
The performance of Optim4RL with different entropy weights in two gridworlds. . . . 98
The performance of Optim4RL with different discount factors in two gridworlds. . . 98
The hyper-parameter settings for PPO and RPG on MuJoCo tasks. 114

xii

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

A visualization of learned functions trained with SGD. 32

The greedy actions of a randomly sampled state for different methods during training

in Mountain Car. L 33
A visualization of learned functions trained with SGD and knowledge consoidation. . 42

A comparison of different strategies to balance learning and preservation for MeDQN(U)

in MountainCar-v0. 43
Evaluation in low-dimensional tasks. 44
Evaluation in high-dimensional MinAtar tasks. 47
A study of robustness to different buffer sizes in MountainCar-v0. 51

The return curves of various algorithms in five Atari tasks with different buffer sizes. 52

Visualizations of common activation functions and their gradients. 59
Plots of Elephant functions and their gradients. 60

Plots of the true function sin(7z), the learned function f(x), and the NTK function
NTK(x) at different training stages using Elephant and SR-NN for approximating a

sine function. L 67

Plots of updating a wrong prediction with ReLU and Elephant. 68

xiii

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

5.1

5.2

5.3

5.4

6.1

The performance of DQN in 4 Gymnasium and PyGame tasks with different activa-

tion functions under various buffer sizes. 69

The learning curves of DQN and Rainbow aggregated over 10 Atari tasks for 6 acti-

vation functions. 71
The return curves of DQN and Rainbow with various activations in 10 Atari tasks. . 73
A sensitivity analysis of hyper-parameters ¢ and d in Elephant. 75
Heatmaps of gradient covariance matrices for training DQN in Amidar. 76
Heatmaps of gradient covariance matrices for training DQN in Battlezone. 76
Heatmaps of gradient covariance matrices for training DQN in Bowling. 7
Heatmaps of gradient covariance matrices for training DQN in Double Dunk. 77
Heatmaps of gradient covariance matrices for training DQN with in Frostbite. 78
Heatmaps of gradient covariance matrices for training DQN in Kung-Fu Master. . . . 78
Heatmaps of gradient covariance matrices for training DQN in Name This Game. . . 79
Heatmaps of gradient covariance matrices for training DQN in Phoenix. 79
Heatmaps of gradient covariance matrices for training DQN with in Q*bert. 80
Heatmaps of gradient covariance matrices for training DQN with in River Raid. . . . 80
A visualization of agent-gradient distributions at different training stages. 86
(a) An example of pipeline training. (b) The network structure of Optim4RL. 89
The optimization performance of different optimizers in four RL tasks. 94

Optim4RL shows strong generalization ability and achieves good performance in Brax

CaSKS. . 96

The bias, variance, and mean squared error (MSE) of the estimated gradient w.r.t.

the number of samples for the PG estimator and the RPG estimator. 109

Xiv

6.2

6.3

6.4

The reward landscapes of Peaks and Holes as well as the learning curves for PPO

and RPG during training. L
The learning curves for PPO and RPG during training on Mountain Climbing.

The learning curves of evaluations on six benchmark tasks for PPO and RPG.

XV

List of Algorithms

1 Deep Q-Network (DQN) o 22
2 Proximal Policy Optimization (PPO) 23
3 Memory-Efficient DQN with Uniform State Sampling (MeDQN(U)) 37
4 Memory-Efficient DQN with Real State Sampling (MeDQN(R)) 39
5 A Learned Optimizer for Reinforcement Learning (Optim4RL) 91
6 Reward Policy Gradient Algorithm (RPG) 108

Xvi

Chapter 1

Introduction

1.1 Motivation and Objective

Deep reinforcement learning (RL) algorithms have shown great success in many applications, such
as computer games (Vinyals et al. 2019, Badia et al. 2020, Schrittwieser et al. 2020, Zha et al. 2021,
Wurman et al. 2022), simulated robotic tasks (Lillicrap et al. 2016a, Haarnoja et al. 2018, Hwangbo
et al. 2019), and recommendation systems (Zheng et al. 2018, Zhao et al. 2018, Zhang et al. 2019b).
However, the learning efficiency of these deep RL algorithms still remains limited. To achieve such
success, these algorithms typically require substantial resources, such as millions of samples (Mnih
et al. 2015), weeks of training (Berner et al. 2019), and hundreds of advanced GPUs (Vinyals et al.
2019). The requirement for large amounts of training resources makes RL less accessible to the
general public, limiting its applicability in real-world settings—particularly for onboard and edge

devices (Hayes et al. 2019, Hayes and Kanan 2022).

A key challenge that hinders the learning efficiency of RL is non-stationarity, which arises from
value bootstrapping, policy iterations, and the resulting shifts in data distributions. The inherent
non-stationarity in RL may lead to catastrophic forgetting (Ring 1994), poor generalization (Igl et al.
2021), low sample efficiency (Lyle et al. 2021), and prolonged training time to reach satisfactory

performance (Dohare et al. 2024), especially when the resources are limited (Lan et al. 2023).

Among these issues, catastrophic forgetting remains to be one of the most critical challenges
to achieving efficient learning for decades (McCloskey and Cohen 1989, French 1999, Wang et al.
2024). Specifically, it stands for the phenomenon that, when used with backpropagation, artificial
neural networks tend to forget prior knowledge drastically, which is commonly encountered in both
continual supervised learning (Hsu et al. 2018, Farquhar and Gal 2018, Van de Ven et al. 2022,
Delange et al. 2021) and RL (Schwarz et al. 2018, Atkinson et al. 2021, Khetarpal et al. 2022).
In RL, a learning agent exhibits catastrophic forgetting when it fails to retain past knowledge and
overwrites previously learned skills during later training, resulting in deteriorating performance and

inefficient learning (Ghiassian et al. 2020, Pan et al. 2022a).

Besides forgetting, learning under non-stationarity also makes RL a difficult optimization prob-
lem with low learning efficiency. For example, in value-based methods, temporal-difference (TD) is

widely applied in value iterations:

V(st) < V(st) + alripn + 9V (se41) — V(se)),

where « is the learning rate, s; and sy41 are two successive states, and 7,41 +vV (s¢+1) is named the
TD target. TD targets are usually biased, non-independent and identically distributed (non-IID),
and noisy, due to changing state-values, complex state transitions, and noisy reward signals (Schul-
man et al. 2016), inducing a changing loss landscape that evolves during training. As a result, in
value-based methods, the gradients usually have high bias and variance which lead to sub-optimal
performance or even a failure of convergence. Similarly, in policy gradient methods, the gradients
of the objective function (see Equation (2.8) in Section 2.2.2 for more details) are also notoriously
high in variance. In summary, unstable gradients in RL training result in difficult optimization and

inefficient learning (Zhao et al. 2019).

In this thesis, we aim to improve the learning efficiency of RL under non-stationarity, thereby
reducing the need for extensive training resources. Specifically, we define learning efficiency in terms

of sample usage, memory consumption, and computational cost.

1.2 Approaches and Contributions

To improve the learning efficiency of RL under non-stationarity, this thesis tackles some of the
challenges through a combination of algorithmic innovation, architectural design, and meta-learning

techniques. In the following, we briefly summarize our contributions in this thesis.

Memory-Efficient Reinforcement Learning Algorithms To reduce forgetting and improve
sample efficiency, the experience replay buffer is widely applied and it has become a standard
component in deep RL. Typically, experiences are stored in a large buffer and used for training at a
later stage. However, a large replay buffer results in a heavy memory burden, especially for onboard
and edge devices with limited memory capacities. We propose memory-efficient RL algorithms
based on the deep Q-network algorithm to alleviate this issue. Our algorithms reduce forgetting and
maintain high sample efficiency by consolidating knowledge from the target Q-network to the current
Q-network. Compared to baselines, our algorithms achieve comparable or better performance in

both feature-based and image-based tasks while easing the burden of large experience replay buffers.

A Novel Activation Function that Helps Reduce Forgetting Recent works have proposed
effective methods to mitigate forgetting; however, these efforts primarily focus on algorithmic so-
lutions. Meanwhile, we do not have a well-understood account of what architectural properties of
neural networks lead to catastrophic forgetting. We aim to fill this gap by studying the role of
activation functions in the training dynamics of neural networks and their impact on catastrophic
forgetting in RL setup. Our study reveals that, besides sparse representations, the gradient sparsity
of activation functions also plays an important role in reducing forgetting. Based on this insight,
we propose a new class of activation functions, elephant activation functions, that can generate
both sparse outputs and sparse gradients. We show that by simply replacing classical activation
functions with elephant activation functions in the neural networks of value-based algorithms, we
can significantly improve the resilience of neural networks to catastrophic forgetting, thus making

RL algorithms more sample-efficient and memory-efficient.

A Learned Optimizer Designed for Reinforcement Learning To alleviate the need for
manually designing optimizers, researchers have proposed using meta-learning to automatically
learn them. In recent years, by leveraging more data, computation, and diverse tasks, learned
optimizers have achieved remarkable success in supervised learning, outperforming classical hand-
designed optimizers. RL is essentially different from supervised learning, and in practice, these
learned optimizers do not work well even in simple RL tasks. We investigate this phenomenon
and identify two issues that are related to the non-stationarity of RL. First, the agent-gradient
distribution is non-independent and identically distributed, leading to inefficient meta-training.
Moreover, due to highly stochastic agent-environment interactions, the agent-gradients have high
bias and variance, which increases the difficulty of learning an optimizer for RL. We propose pipeline
training and a novel optimizer structure with a good inductive bias to address these issues, making
it possible to learn an optimizer for RL from scratch. We show that, although only trained in toy

tasks, our learned optimizer can generalize to unseen complex tasks.

An Innovative Policy Gradient Method that Integrates Reward Gradients Despite the
increasing popularity of policy gradient methods, they are yet to be widely utilized in sample-scarce
applications, such as robotics. The sample efficiency could be improved by making best usage of
available information. As a key component in RL, the reward function is usually devised carefully
to guide the agent. Hence, the reward function is usually known, allowing access to not only
scalar reward signals but also reward gradients. To benefit from reward gradients, previous works
require the knowledge of environment dynamics, which is hard to obtain. In this work, we develop
the reward policy gradient estimator, a novel approach that integrates reward gradients without
learning a model. Bypassing the model dynamics allows our estimator to achieve a better bias-
variance trade-off, which results in a higher sample efficiency, as shown in the empirical analysis.

Our method also boosts the performance of PPO on different control tasks.

In summary, this thesis systematically investigates the challenges posed by non-stationarity in
RL and proposes practical, resource-efficient solutions across algorithmic, architectural, and opti-

mization dimensions. The presented approaches aim to advance the development of more accessible,

scalable, and efficient RL systems, particularly for real-world deployment under constrained com-

putational resources.

Chapter 2

Background

In this chapter, we introduce the basic concepts of reinforcement learning, a few classical reinforce-
ment learning algorithms with related theories, as well as the background of catastrophic forgetting,

knowledge distillation, and meta-gradient methods.

2.1 Markov Decision Process

Reinforcement learning (RL) is a computational approach to goal-directed learning from interactions
with an environment (Sutton and Barto 2018). To achieve a goal, a learning agent must be capable

of perceiving the state of the environment and executing actions that affect the state.

Specifically, the problems of RL can be formalized as Markov decision processes (MDPs). Let
A(X) be the space of all probability distributions supported over the set X. Consider a MDP,
M = (S, A,P,po, R,v), where S is the state space, A is the action space, P : § x A — A(S) is
the transition probability, pp € A(S) is the initial state distribution, R : S x A — R is the reward

function, and v € [0,1] is the discount factor.

An agent interacts with the MDP environment based on a policy m € IT : § — A(A). Specifically,
the agent starts from state sop ~ po(-). At each time-step ¢, it observes the state s; € S, takes an

action a; ~ m(-|s¢), transits to the next state s;41 ~ P(:|s,at), and receives a scalar reward

riy1 = R(st,ar). A trajectory (up to time-step 7T') is defined as 7 = (sg,ag, 71,81, ,S7). Define

return G; over 7 as the total (discounted) reward from time-step ¢:
T—1
Gi=> v 'R(si,a). (2.1)
i=t
State-value functions are defined as the expected return under policy m,
Vz(s) = Ex[Gt|st = s]. (2.2)
Similarly, action-value functions are defined as
Qr(s,a) =E[Gi|s = s,ar = al. (2.3)
Furthermore, by definitions V; and @, are connected with the following equations:

Vﬂ'(s) = Z W(G‘S)Qﬂ'(sa a),

acA

Qx(s,a) =R(s,a) +~ Z P(s'|s,a)Vy(s').

s'eS

With the above equations, we can compute V; and @, recursively:

Va(s) = Z m(als)Qx(s,a)

acA
=Y w(als)[R(s,a) +v > _ P(s|s,a)Va(s)], (2.4)
acA s'eS
Qr(s,a) =R(s,a) +7 Z P(s']s,a)Vy(s")
s'eS
=R(s,a) +v Y _P(s'|s,a) Y 7(d|s")Qx(s). (2.5)
s'eS a’'eA

Specifically, Equation (2.4) and Equation (2.5) are known as the Bellman equations.

The goal of the agent is to find an optimal policy 7, such that Vi (s) > Vi (s) for all s € S and

7w € II. By definition, all optimal policies should have the same value functions, called the optimal

value functions, which are formally defined as

Vi(s) = max Vz(s),

Q«(s,a) = max Qr(s,a).
Similar to value functions, Vi and @), are also connected:

Vi(s) =max Qu(s, a),

acA

Q+(s,a) =R(s,a) + Z P(s'|s,a)Vi(s).

s'eS

Furthermore, for optimal value functions we have the Bellman optimality equations:

V*(S) = 1nax Q*(37 a),

acA

— R P/ ‘/'* / ,
| Rswa) 7 32 POl e

Q«(s,a) =R(s,a) +~ Z P(s'|s,a)Vi(s")

s'eS

:R , + P / , . /7 /‘
(50 7 3 PO 0) g Q)

2.2 Reinforcement Learning

(2.6)

Based on a policy function is learned, RL algorithms can mainly be divided into two categories:

value-based methods and policy gradient methods. In the following sections, we explain them one

by one.

2.2.1 Value-Based Methods

In value-based methods, we do not learn a policy function directly; instead, we train an action-value

function @ : S x A — R first and then extract a policy given this action-value function.

Among them, Q-learning (Watkins 1989) is one of the most popular value-based algorithms.
Concretely, it applies temporal-difference (TD) learning to learn the optimal action-value function.

For a sampled transition {s;, at, 7441, S¢+1}, the updating rule is

Q(st,ar) < Q(se,ar) + a(Y — Q(st, ar)),

where « is learning rate and Y = 7141 +y maxge 4 Q(st41,a’) is the target action-value adapted from
the Bellman optimality equation (Equation (2.7)). The corresponding greedy policy is extracted

from @ and formally defined as

1, if a =argmax, 4 Q(s,a’)
Wgreedy(a‘s) =
0, otherwise

With a slight abuse of notation, we can also write 7Tgreedy(s) = argmax,c 4 Q(s,a). To strike a

better exploration-exploitation balance, we usually employ the e-greedy policy:

¢ 1—¢, ifa=argmax,cy Q(s,a)
7"'e—greedy((ﬂs) = W + ,
0, otherwise

where 0 < € < 1. Essentially, e-greedy policy adds a certain exploration noise controlled by € to the
greedy policy. At each time step, the e-greedy policy selects the greedy action (i.e., the action with
the highest action-value) with probability 1 — €, or a random action (uniformly at random over all

possible actions) with probability e.

2.2.2 Policy Gradient Methods

Unlike value-based methods, policy gradient methods aim to learn and approximate an optimal
policy function directly. Among them, besides learning a policy function (i.e., the actor), actor-

critic algorithms also approximate a value function (i.e., the critic) to help learning.

For convenience, let’s consider continuous state and action spaces.! The goal of the agent is to
obtain a policy 7 that maximizes the expected return starting from the initial states. Let a policy

g be a differentiable function of a weight vector §. Our goal is to find 6 that maximizes
J(0) = /po(s)V,Tg(s)ds. (2.8)

To this end, we can apply gradient ascent techniques. Since the true gradient Vy.J(0) is not typ-
ically available, we resort to Monte Carlo methods (Mohamed et al. 2020). This gradient estimation
problem can be formalized as computing the unbiased gradient of the expectation of a function with
respect to some parameters of a distribution. Specifically, let pg(z) be the probability distribution
of z with parameters 6. Define F(0) = [pp(x)¢(x)dz. Then the key step of the problem can be

formally defined as estimating Vg F'(0):
VoF(0) = VoEx~p, [p(X)].

The gradient estimation problem is fundamental in many machine learning areas, such as rein-
forcement learning (Williams 1992), variational inference (Hoffman et al. 2013), evolutionary algo-
rithms (Conti et al. 2018), and variational auto-encoders (Kingma and Welling 2013). In general,
there are many approaches for gradient estimation, such as likelihood-ratio gradient estimators,
reparameterization gradient estimators, finite difference methods, infinitesimal perturbation analy-
sis (L’ecuyer 1990), and mean-valued derivative methods (Pflug 1989, Carvalho et al. 2021). Next,
we introduce two major approaches for solving this problem in RL, resulting in various policy

gradient algorithms.

LFor discrete state and action spaces, we replace summation with integration for suitable equations in the following.

10

Likelihood-Ratio Gradient Estimators

The likelihood-ratio (LR) gradient estimator (Glynn 1990) is one of the most popular gradient

estimators. This estimator applies the log-derivative technique Vg logpg(x) = % to obtain the

unbiased gradient estimation:
VoF(6)
VB, 0l(w)] = Vi [pala)ola)ds
— [éta)Vapn(a)da = [G(w)pa(a) Vatog po(a)do

=E xpy [0(X) Vo log pg(X)]. (2.9)

The LR estimator is a fundamental component of the policy gradient theorem (Sutton and Barto
2018). Partly because of its generality of being applicable to both continuous and discrete action
spaces, the LR estimator has been used in many policy gradient methods. In the following, we show
a direct application of the LR estimator in RL and provide a proof of the policy gradient theorem

for completeness.

First, we make two common assumptions on the MDP following Imani et al. (2018).
Assumption 2.1. S and A are closed and bounded.
Assumption 2.2. P(s'|s, a), mg(als), R(s,a), po(s) and their derivatives are continuous in variables

s, a, s, and 6.

The two assumptions above allow us to exchange derivatives and integrals, and the order of
multiple integrations, using Fubini’s theorem and Leibniz integral rule. Now, we are ready to move

on to the proof.

Theorem 2.1 (Policy Gradient Theorem). Suppose that the MDP satisfies Assumption 2.1 and

Assumption 2.2, then

Vo (0) = / 0 (5)10(a]$) Oy (5, @)V log g (als)dads.

11

where d™7(s') = [372 po(s)p(s — &', t,mp)ds is the (discounted) stationary state distribution

under g and p(s — §',t,my) is the transition probability from s to s’ with t steps under my.

Proof. By definition, we have

Vo (s) =Ex

Z’yt(R(st,at) | s0 = S])
t=0

Qﬂ'g (Sa a) :Eﬂ'

oo
Z”YtR(st,at) | so =s,a0 = a] .

t=0

Then Vz, and @, are connected by

Qnry(s,a) =R(s,a) + ’V/P(s’]s,a)Vm(s’)ds’,

Vi (5) = / 70(al3)Qry (5, a)da.
Thus

VoV, (5)
~V, (/ 7r9(a|s)Q7r9(s,a)da>
— / Qs (5, a)Vorg(als)da + / 70(als)VoQu, (5, a)da
:/erg(57a)v9779(a|8)da+/7rg(a|s)V9 <R(S,a) —i—’)’/P(S/s,a)VﬂG(s/)dS/) da
_ / Qn, (5, a)Vmo(als)da + / P(s'|s, a)mo(a]s) VoV, (s')ds'da

:/Qﬂe(s,a)VQWQ(aB)da—1—7/]9(8 — 5", 1,m9) Vo Vi, (s')ds’,

where p(s = §',1,mp) = [mg(als)P(s'|s, a)da.

Now, iterating this formula, we have

V@Vm (3)

12

:/ng(s,a)VQWQ(a|s)da—{—7/p(s — 5", 1,m9) Vo Vi, (s')ds'
=/Qﬂg(s,a)Vmg(a|s)da+7/p(s — ', 1,mp)
</ Qnr,(s',a") Vymg(d'|s")da" + *y/p(s’ — 5", 1,7T9)V9V7T9(8”)d8”> ds’
Z/Qﬂg(s,a)VQWQ(a|8)da—l—’y/p(s — 5", 1,m9)Qnr, (s',a") Vomg(d'|s")da'ds
+ 42 /p(s — 8, 1,m)p(s’ — §",1,m9)VoVr,(s")ds"ds
=/Qm(8,a)Ve7ra(a\8)da +’Y/p(5 — 8", 1,m9)Qn, (s',a") Vomg(d'|s")da'ds

+~2 /p(s —5',2,m9) VgV, (s')ds'

—/Zytp(s — 8 t,mp) (/ Qﬂe(sl,a’)ngg(a’]s’)da’> ds',
=0

where p(s = s, t+1,m9) = [p(s — &, t,m)p(s’ — §",1,mp)ds’.

Finally,

Vo J(0)

:V(;/pg(s)vm(s)ds = /po(s)VQVm,(s)ds
:/nytpo(s)p(s — 8", t,m9)Qny (8", a) Vomg(d'|s")da'ds'ds
t=0

_ / dﬂG’W(S)ng (37 a)Vewg(a]s)dads

:/d’m’”(s)ﬂ'g(aS)Qﬂg(s,a)Vg log mp(a|s)dads, (Equation (2.9))

where d™7(s') = [372 po(s)p(s — &', t, mg)ds. O

Although the above theorem suggests sampling from the discounted stationary state distribution
d™7 in practice sampling is usually done from the related undiscounted stationary state distribution
or a replay buffer. We denote this undiscounted stationary state distribution as d™ = d™7=!. For

a more detailed discussion, please check Zhang et al. (2022).

13

Moreover, variance reduction (Greensmith et al. 2004) is usually necessary to fully exert the
power of the LR estimator. Subtracting a baseline (Williams 1992), applying eligibility traces (Singh
and Sutton 1996), and utilizing the generalized advantage estimator (GAE) (Schulman et al.
2016) are three effective approaches to mitigate the variance issue of policy gradient based on the
LR estimator. In the following, we show that the gradient Vy.J(6) is still unbiased after subtracting

the state-value baseline V7, .

Corollary 2.1 (Policy Gradient Theorem with the State-Value Baseline). Suppose that the MDP

satisfies Assumption 2.1 and Assumption 2.2, then
VoJ(0) = /d”e"y(s)ﬂg(ab)(Qm (s,a) — Vz,(s5))Vglog mp(als)dads.

where d™7(s') = [> 727 po(s)p(s — &', t,mp)ds is the (discounted) stationary state distribution

under w9 and p(s — §',t,mg) is the transition probability from s to s’ with t steps under y.

Proof. Considering Theorem 2.1, we only need to prove that

/ A0 (s)79(als) Vi, (5) Vg log m(als)dads = 0.

Specifically,
/d”9’7(8)7r9(a|s)V,r9 (s)Vglogmg(als)dads
:/d’T‘”(s)Vm(s) </ mo(als)Vo logm)(a|s)da) ds
:/d”@"y(s)Vwe(s) (/ Vgﬂg(a]s)da) ds
:/dwe’W(s)Vﬂe(s) <V9/779(a|5)da> ds
= / d™7(s)Vr,(s) (Vgl)ds = 0.
This completes the proof. O

14

Many actor-critic algorithms use this LR estimator to estimate gradient, such as asynchronous
advantage actor-critic (Mnih et al. 2016), trust region policy optimization (Schulman et al. 2015),
proximal policy optimization (PPO) (Schulman et al. 2017), and actor-critic with experience re-

play (Wang et al. 2017).

Reparameterization Gradient Estimators

The reparameterization (RP) gradient estimator is also known as the pathwise gradient estimator
or the reparameterization technique (Mohamed et al. 2020). Given the underlying probability
distribution pg(z), this estimator takes the advantage of the knowledge of distribution pg(x) and
reparameterize pg(z) with a simpler base distribution p(e) that makes two equivalent sampling

processes:
X Npe(') — X = f9(6)7 € NP(')? (210)

where fy is a function that maps € to x. In other words, there are two equivalent ways to sample
X ~ pp(x): one is to sample it directly; the other way is to first sample e from a base distribution
p(€) and then apply a function f to transform e to X. For example, assume X is a Gaussian variable
where X ~ N(u,0) and 6 = [u,0]. Let the base distribution be p(¢) = N(0,1). Then X can be
reparameterized as X = fp(€) = p + oe. For many common continuous distributions (e.g., the
Gaussian, Log-Normal, Exponential, and Laplace), there exists such ways to reparameterize them

with a simpler base distribution. Finally, we can write the gradient estimation as
VoF () = Vo [pa(@)olalde = Vo [p@o(al0)de = [plTaolfo()de. (211)

Note that pg(x) = p(e)|Vefo(e)|~! due to integration by substitution. RP estimators are
only applicable to known and continuous distributions.? In general, there is no guarantee that

RP estimators outperform LR estimators (Gal 2016, Parmas et al. 2018). However, RP estimators

2An application to discrete random variables is possible by reparameterizing the Gumbel distribution—the con-
tinuous counterpart of the categorical distribution (Jang et al. 2017).

15

have a lower variance under certain assumptions (Xu et al. 2019), which usually lead to great ben-
efits in many areas (Mohamed et al. 2020). Kingma and Welling (2013) applied the RP estimator
to obtain a differentiable estimator of the variational lower bound that can be optimized directly
using standard stochastic gradient methods. Rezende et al. (2014) used RP estimators for deep

generative models and proposed deep latent Gaussian models that generate realistic images.

In many RL algorithms, RP estimators play a crucial role in reparameterizing actions and de-
coupling the randomness from a policy, such as soft actor-critic (SAC) (Haarnoja et al. 2018),
SVG (Heess et al. 2015), and RELAX (Grathwohl et al. 2018). Deterministic policy gradient algo-
rithm (DPG) (Silver et al. 2014), deep deterministic policy gradient algorithm (DDPG) (Lillicrap
et al. 2016a), and deterministic value-policy gradient algorithm (Cai et al. 2020b) can also be viewed
as special cases of these algorithms, where the probability density function of the base distribution
is a Dirac delta function. Finally, Wang et al. (2019) proposed a class of RL algorithms called
reparameterizable RL, where the randomness of the environment is decoupled from the trajectory

distribution via the reparameterization technique.

In the following, we prove the reparameterization policy gradient theorem which directly applies

the RP estimator to compute the gradient of the policy objective (Equation (2.8)).

We begin by assuming that the action a is sampled from the policy 7 parameterized with 6
given the current state s: a ~ mg(-]s). We then reparameterize the policy with a function f:
a = fo(e;s), e ~ p(-). Let function g be the inverse function of f, that is, € = gg(a;s) and
a = fo(go(a; s);s). Furthermore, similar to Assumption 2.2, we make one more assumption on the

MDP in the following.

Assumption 2.3. fy(e;s), go(als), p(e), and their derivatives are continuous in variables s, a, 0,

and €.

Theorem 2.2 (Reparameterization Policy Gradient Theorem). Suppose that the MDP satisfies

Assumption 2.1, Assumption 2.2, and Assumption 2.3, then

Vo (6) = / 070 (8)p(€) Vo fo (€)Y @y (5, @) gy sy s

16

Proof. By Theorem 2.1, we have
VoJ(0) = /d“9’7(5)7r9(a|s)Q,r9(s,a)Ve log g (als)dads.
Thus,

Vo J(0)

/ 0707 (s)mo(al$)Qr, (5, @) Vi log mo(als)dads

/ 4o (s) (/ Qwe(s,a)erg(a]s)da> ds
/ o (s) / Vo (Qny (5, a)ms(als)) da — / m(a\s)ve%(s,a)da] ds

- / o7 (s) :ve < / Qﬂe(s,a)W9(a|s)da> - / wa(a\s)VQQﬂe(s,a)da] ds
/
/

dmo(s) _Ve </p(e)Q7r9 (s,fg(e;s))de> — /p(e)v(;QﬂG(s,a)a:fe(e;s)de] ds (by reparameterization)

dﬂgy’y(s) /p(e) (V@f@(E; S)VGQW) (87 a)‘azfe(as) + VGQM (37 a)|a=f6(€;s)) de
-/ p(e)veczﬂe(s,anafe(e;s)de} as

:/dﬂ'g,’y(s) p(E)VGfQ(E;S)anﬂg(S’a)’ang(e;s)dedS'

Next, we introduce the deterministic policy gradient theorem, which is first proved by Silver
et al. (2014). Moreover, both DPG and DDPG are proposed based on this theorem. It can also be

proved as a corollary of Theorem 2.2 by considering the settings of deterministic policies.

Corollary 2.2 (Deterministic Policy Gradient Theorem). Suppose that the MDP satisfies Assump-

tion 2.1, Assumption 2.2 and Assumption 2.3, for a deterministic policy pg(s), we have

VoJ(0) = / PO () V116 (5) V0@ (51 @) 5115

Proof. Let p(e) be the delta function. Thus [p(e) fy(e; s)de = fp(0;s). Furthermore, let fy(0;s) =

17

tp(s). By Theorem 2.2,

VoJ(6)
= [a2 ([V0t 990 5.0l) s
= [V0 0(0:5) 9@ 500105
= [()T (5) T 51005

Finally, we introduce the entropy-regularized reparameterization policy gradient theorem, which

can also be derived as a corollary of Theorem 2.2.

Corollary 2.3 (Entropy-Regularized Reparameterization Policy Gradient Theorem). Consider

entropy-reqularized value functions

[Z'y (¢, az) + aH(mo(]51))) | 50 = 5] ,

Qry(s,a) = [nyRst,at +ozz'yt7-[mo(-|st)) | s0 = s, ao—a],

t=0 t=1

where H(p) = — f p(x)log p(x)dx is the differential entropy for probability density function p(x),
and « is a positive constant. Suppose that the MDP satisfies Assumption 2.1, Assumption 2.2 and

Assumption 2.3, then

Vol (6) = [7 (5)p(6) [Vafo(es5)VuQey (5:0)lac) — aVolog mo(fulei)]s)] deds.

Proof. Given the definitions of V,(s) and Qr,(s,a), easy to verify that they are connected by

Vi (s)
=Ex[Qny (5, a)] + aH(mo(+|5))
:/we(a]s)(Qﬂg(s,a) — alogmy(als))da

18

— / D) (Qny (5, foles) — alog mo(fole: s)]s)) de.

The Bellman equation for Qr, is

Qry(s,0)
=E. [R(s,a) + 7(Qr, (s,) + aH(mg(-|s)))
=R(s,a) + vE[Vg,(+7/P s, a) Vi, (
Then
VoVz, ()

—V, </779)0y (5,0 da> + aVH(me(-|s))

=Vy </p €)Qry (s, fole; s d€> + aVeH(me(+|s))

= [MOVoQn, (s ales s))de + aVmol 1)

— [20) (Vo) 9@y (520l + T 5,0y () de + @Vl 1)

- [0 <V6f9(€; Vo (530 lamgutc + 1 [PS5, foles s>>vavﬂ9<s’>ds') de + aVgH(mg(-]s))
— [POVl)9 (5,0 + 1 [PP, foles) ViV (5)deds’ + (o]5)

_/p(e)ngg(e; 8)VaQry(5,)]a=f, (e;5)d€ + ’y/p(s — 5", 1,m9) VoV, (s)ds" + aVeH (e (:|5)),

where p(s = &', 1,m9) = [p(e)P(s']s, fole; s))de.

Now, iterating this formula, we have

v9vﬂ'e()

=aVeH (my(- —|—/p YWVofo(e;8)VaQry(s,a)|q= fo(es)de+y p(s — s',1,7p) YVoVr, (s "ds'

p(s — 8,1, m9) x

\\

—OJVQH 7T9 +/p Vb?f@ € 8 aQW9(S a |a fo(€;s) d€+7

19

(OéVG'H(We('IS/)) +/p(€')vef9(€';S')VaQwe(S',aNafg(a;s/)dtf/ +7/P(8/ — 5",1,779)V6V7r9(8")d3") ds’
—aVaH(mo(1)) + [P(OVSalc: 5)VaQu (510 lampy(s e
+ ory/p(s — 8,1, 79)VoH(mg(+|s"))ds" + ”y/p(s — 5", 1,m9)p(€)Vafo(€; 8")VaQry (S a)]a:fg(el;sl)de’ds’

p(s = s, 1, m)p(s" — 5", 1,m9) VgV, (s")ds"ds’

\

=aVoH(m(:]s)) + /p(ﬁ)vefe(ﬁ; 8)VaQry (5, 0)| a7, (e;5)d€
+ a’y/p (s = 8,1, m9)VoH(ma(-|s"))ds’ + 'y/p(s — ', 1,79)p(e') Vo fo(e; sl)VQQﬂg(s’,a)]a:fe(el;s/)de’dsl

+72/ps—>s 2,m9) VoV, (s")ds'

—/nytp(s — ' t,mp) <aV97-[(7r9(-]s’)) + /p(e’)ngg(e/; S VVaQry (s, a)\a:fg(el;sl)de’) ds’,
=0

where p(s = ", t+1,m9) = [p(s — &, t,m)p(s’ — §",1,mp)ds’.

Furthermore,
Vot (ma(:]s))
= — Vg/wg(a\s) log mg(als)da
— Vi [ple)logmfafess))de
—— [pVolog ma(fa(ei)ls)de.
Then
VoVr,(3)

— / Zytp(s — 8’ t,mp) <on9’H(7r9(-|s’)) + /p(e')ngg(e’; §VVaQnr, (s, a)|af9(€/;5/)de'> ds’
t=0

= / Z fytp(s — s’ t,m)p(€) (V@f@(él; sl)Van(s/, a)|a:f9(€,;s/) — aVylog m(fo(s, 6’)\3)) de'ds’.

t=0

20

Finally,

Vo (0)

:V(;/pg(s)vm(s)ds = /po(s)VQVm(s)ds
:/nytpo(s)p(s — 5", t,m)p(e) (Vo fole; 8") VaQury (8, a)azfy () — @V log mg(fo(€; 5)|s)) deds’ds
t=0

:/d””(s) p(€) (Vo fole; $)VaQry (8, a)lazfy(es) — @Volog mo(fo(e; s)|s)) deds.

Note that there is a similar result presented by Haarnoja et al. (2018) for SAC. They obtain it
by minimizing the Kullback-Leibler (KL) divergence between the new policy and the policy derived
from the exponential of the soft Q-function. Here, we derive it by directly minimizing the objective

with the help of the RP gradient. This corollary provides an alternative way to understand SAC.

2.3 Deep Reinforcement Learning

For learning with relatively large-scale MDPs, deep learning (LeCun et al. 2015) are applied into RL.
Specifically, neural networks are used to represent policy and value functions. For example, given
a policy 7, m, V;, and @ can be approximated with neural networks my, V4, and @y, respectively,

where 6, ¢, and 1 denote the weights of the neural networks.

In the following, we provide a brief introduction to two important algorithms used in this thesis:

deep Q-network (DQN) and proximal policy optimization (PPO).

2.3.1 Deep Q-Network

Based on Q-learning, Mnih et al. (2015) propose the deep Q-network (DQN) algorithm, which uses
a neural network (i.e., the Q-network) to approximate the action-value function @ in Q-learning. To

mitigate the divergence problem of using function approximators such as neural networks, a target

21

network is introduced to stabilize training. The target neural network is a copy of the Q-network
and is updated periodically for every Ciarger steps, where Cigrger is an integer hyper-parameter.
Furthermore, to improve sample efficiency and learning stability, Lin (1992) equipped the learning
agent with experience replay, storing recent transitions collected by the agent in a buffer for future
use. During a learning update, the agent would sample a mini-batch of transitions and then perform

TD learning updates. The full description is listed in Algorithm 1.

Algorithm 1 Deep Q-Network (DQN)

Initialize an experience replay buffer D
Initialize action-value function @y, with random weights v
Initialize target action-value function Q- with random weights ¢~ =
Observe initial state s
while the agent is interacting with the environment do
Choose action a for s by e-greedy based on)
Take action a, observe r, s’
Store transition (s, a,r,s’) in D and update state s = ¢’
for every Ciyrrent steps do
Sample a random mini-batch of transitions B = {(s, a,r,s")} from D
Get update target: Y (s,a) = r +ymaxyec4 Qy-(s',d) for (s,a,r,5') € B
Compute DQN loss: Lpgn = ﬁ Ys.amsenY (s,a) — Qus, a))?
Perform a gradient descent step on Lpgy with respect to 1

— = =
w22

H
=

Reset ¢~ = 1 for every Ciorger steps

2.3.2 Proximal Policy Optimization

Proximal policy optimization (PPO) is simple to implement, closely related to on-policy learning,
and achieves good performance on many tasks (Schulman et al. 2017). First, instead of subtracting
the state-value baseline Vy, as in Corollary 2.1, we use A-return (Sutton and Barto 2018) G}
to replace Vi, (s), which has a close relationship to GAE HtGAE()‘) (Schulman et al. 2016), i.e.,
G} = HtG AR 4 Vo (st), where A € [0,1]. Using A-returns as baselines significantly reduces the
variance of gradient estimations while retaining tolerable gradient biases (Schulman et al. 2016).
Next, we constrain the policy update in PPO by using a clipped surrogate objective Emold [:(0)],

where 1;(0) = min(py(0)Hy, clip(pe(6),1 — €,1 + €)Hy), where Hy is an estimator of the advantage

function, and p;(0) = mg(ac|s¢) /e, (at]s¢) is the importance sampling ratio. Then the gradients of

22

l¢(0) can be written as

0, Ht>0,pt(9)>1+€
Vili(6) = < 0, Hy <0,p(0) <1—¢- (2.12)

Vopi(0)Hy, otherwise

Inspired by Equation (2.12), we can use a modified ratio p,(#) to simplify,

0, Ht>0,pt(0)>1+€

i)t(e) =450, H, < 0,,0,5(0) <l—e€- (213)

pt(0), otherwise

Define [;(0) = p,(6)H;. Easy to verify that this Vyl;(0) is the same as Equation (2.12). For a

complete description of PPO, please check Algorithm 2.

Algorithm 2 Proximal Policy Optimization (PPO)
1: Input: initial policy function parameters 6, initial value function parameters ¢
2: for k=0,1,2,... do
3: Collect set of trajectories D = {;} by running policy 7y in the environment
Compute returns G

Compute advantage estimates H; = HtGAE(,\)

Normalize H; using the sample mean and standard deviation of all advantage estimates
for epoch =0,1,2,... do
Shuffle and slice trajectories D into mini-batches
for each mini-batch B do
10: Set p,(#) according to Equation (2.13)
11: Update policy parameters # by maximizing the objective: Eg[p,(0)Hq]
12: Update value estimate parameters ¢ by minimizing: Ep[(94(S:) — Gt)?]

2.4 Catastrophic Forgetting

When trained on non-independent and non-identically distributed (non-IID) data and optimized

with stochastic gradient descent (SGD) algorithms, neural networks tend to forget prior knowledge

23

abruptly, a phenomenon known as catastrophic forgetting (French 1999, McCloskey and Cohen
1989). It is widely observed in continual supervised learning (Hsu et al. 2018, Farquhar and Gal
2018, Van de Ven et al. 2022, Delange et al. 2021) and reinforcement learning (Schwarz et al. 2018,
Khetarpal et al. 2022, Atkinson et al. 2021).

2.4.1 Definition

Following Doan et al. (2021), we formally define (task-level) catastrophic forgetting as follows.

Definition 2.1 (Catastrophic Forgetting). Let fo, () be a neural network with input @, parameter-
ized by w. This neural network is first trained on task A and then on task B. The resulting weights
after training on tasks A and B are denoted as wa and wp, respectively. Then the catastrophic
forgetting of task A after training on task B, with respect to a test dataset D of task A, is defined

as

AEDY = Y [fwa(®) = fus (@)][3. (2.14)

(x,y)eD

Note that a larger value of A47B indicates a greater degree of catastrophic forgetting. When

AA—>B

the dataset D contains only one sample, reduces to sample-level catastrophic forgetting,

which closely relates to Property 2.2 and Property 2.3 in the next section.

2.4.2 Understanding Catastrophic Forgetting via Training Dynamics

Next, we look into the forgetting issue through the lens of neural network training dynamics. To
conduct a detailed and fine-grained analysis, we examine and enhance the existing concept of local
elasticity (He and Su 2020), proposing several properties that should be achieved or satisfied by

continual learning systems.

He and Su (2020) discussed the stability-plasticity dilemma in light of a concept they called local
elasticity. A function f is locally elastic if, after being updated with gradient descent at timestep
t, f(x) is not significantly changed at a that is dissimilar to x; in a certain sense, and vice versa.

For example, we can characterize the dissimilarity with the 2-norm distance. Although He and Su

24

(2020) show that neural networks with non-linear activation functions are locally elastic in general,
the degrees of local elasticity of classical neural networks are not enough to address the forgetting
issue empirically, as we will show next. Moreover, there is a lack of theoretical understanding of the

connection between network architectures and the degrees of local elasticity.

For simplicity, we consider a regression task. Let a scalar-valued function f,,(x) be represented
as a neural network, parameterized by w, with input @. F(x) is the true function and the loss
function is L(f, F,x). For example, for squared error, we have L(f, F,z) = (fw(x) — F(x))%. At
each time step t, a new sample {x;, F'(x;)} arrives. Given this new sample, to minimize the loss
function L(f, F, x;), we update the weight vector by w’ = w+A,, where A, is the weight difference.
With the stochastic gradient descent (SGD) algorithm, we have w’ = w — aV4, L(f, F, xt), where
« is the learning rate. So Ay = w' —w = —aVL(f, F,x;) = —aVL(f, F,)V fw(x:). To see

how A, relates to the function change for any @, we apply Taylor expansion and have

fur (®) = fu ()
= futa, (@) = ful@)
= fu (@) + (Vwfu(®), Aw) + O(AT) — fu(z)
= (Vuwfuw(®), Aw) + O(AL,)

= — aVL(f, F. %) (Va fur (@), Ve fur (0)) + O(AT,), (2.15)

where (-,-) denotes the dot product or Frobenius inner product depending on the context. In this
equation, only the neural tangent kernel (NTK) (Jacot et al. 2018, Banerjee et al. 2023) is

related to @, which is formally defined as

Kk (@, xp; w) = (Vi f (), Voo fu (1)) (2.16)

This kernel is central to describe the training dynamic of neural networks (Huang and Yau 2020,
Belfer et al. 2024), closely related to generalization (Huang et al. 2020, Chen et al. 2020) and

forgetting (Riemer et al. 2019, Doan et al. 2021) in deep learning.

25

Without loss of generality, assume that the original prediction fy,(2;) is wrong, i.e., fu(x:) #
F(x;) and V;L(f,F,x;) # 0. To correct the wrong prediction while avoiding forgetting, after
performing a gradient descent step, the function value at @ = x; should be updated and the
function values for & # x; should be not be changed. Thus, we expect this NTK to satisfy two

properties that are essential for continual learning:
Property 2.1 (Error Correction). For & = xt, (Vi fu(€), Ve fw(x:)) # 0.

Property 2.2 (Zero Forgetting). For @ # @i, (Vu fu (), Vi fw(2:)) = 0.

In particular, Property 2.1 allows for error correction by optimizing f,(2;) towards the true
value F'(x;), so that we can learn new knowledge (i.e., update the learned function). We would
have fy(x) — fw(x) = 0 if (Vi f(x), Vi fw(2)) = 0, failing to correct the wrong prediction at
x = x;. Essentially, Property 2.1 requires the gradient norm to be non-zero. On the other hand,
Property 2.2 is much harder to be satisfied, especially for nonlinear approximations. To make this
property hold, except for @ = x;, the neural network f is required to achieve zero forgetting after
one step optimization, i.e., V& # @, fur () = fuw(x). It is the violation of Property 2.2 that leads
to the forgetting issue. For tabular cases (e.g., « is a one-hot vector and fy,(x) is a linear function),
this property may hold by sacrificing the generalization ability of deep neural networks. In order to

benefit from generalization, we propose Property 2.3 by relaxing Property 2.2:
Property 2.3 (Mild Forgetting). (Vi fuw (), Vi fw(xt)) = 0 for x that is dissimilar to x; in a

certain sense.

The above property is intentionally stated in a loose form to maintain generality. It can be made
more precise under specific conditions. For example, consider two positive real numbers € and 4.

Then mild forgetting could be that Ve s.t. ||z — x¢|| > €, [(Vw fw(®), Vi fw(2:))| < holds.

2.5 Knowledge Distillation

Knowledge distillation, introduced by Hinton et al. (2014), is a model compression technique where

a compact “student” model is trained to mimic the output of a larger “teacher” network by learning

26

from the teacher’s soft probability outputs, which capture nuanced inter-class relationships. This
concept extends earlier work on model compression and teacher-student frameworks (Bucilui et al.
2006, Ba and Caruana 2014), which aimed to approximate complex models or ensembles using

simpler networks.

While initially applied to convolutional networks for image recognition, knowledge distillation
has since been widely adopted in domains, such as natural language processing (Tang et al. 2019,
Sanh et al. 2019), speech recognition (Huang et al. 2018), and RL (Rusu et al. 2015, Sun and
Fazli 2019, Lai et al. 2020). Variants such as self-distillation (Zhang et al. 2019a), multi-teacher
distillation (You et al. 2017), attention transfer (Zagoruyko and Komodakis 2017), and contrastive
distillation (Tian et al. 2020) have further extended its applicability. Moreover, it is frequently
combined with complementary compression techniques, including pruning (Han et al. 2016), quan-
tization (Hubara et al. 2018), and neural architecture search (Cai et al. 2020a), to achieve highly

efficient yet accurate models suitable for deployment on resource-constrained hardware.

2.6 Meta-Gradient Methods

Meta-learning (or learning to learn) (Thrun and Pratt 1998, Vilalta and Drissi 2002, Hospedales
et al. 2021, Vettoruzzo et al. 2024) involves two levels of learning and aims not only to perform well
on specific tasks but also to acquire meta-knowledge and improve learning algorithms themselves
through experience over time. It has been widely applied in machine learning, including tuning
hyperparameters (Sutton 1992a, Li et al. 2017), modifying network weights (Schmidhuber 1987),
designing improved loss functions (Houthooft et al. 2018, Kirsch et al. 2020, Bechtle et al. 2021),
enhancing task representations (Javed and White 2019), and discovering more effective update rules

for RL (Oh et al. 2020).

From an optimization perspective, meta-learning can be viewed as a bilevel optimization prob-
lem (Zhang et al. 2024). Various optimization techniques have been applied to meta-learning,
including stochastic gradient descent (Andrychowicz et al. 2016, Wichrowska et al. 2017, Finn

et al. 2017a;b, Franceschi et al. 2018, Bechtle et al. 2021, Liu et al. 2019a), evolutionary algo-

27

rithms (Schmidhuber 1987, Song et al. 2020, Lu et al. 2022, Houthooft et al. 2018), and RL (Daniel
et al. 2016, Duan et al. 2016, Li and Malik 2017).

Among them, we primarily focus on meta-gradient methods (Xu et al. 2018, Sutton 2022),
which apply gradient-based optimization to meta-learning. Due to their generality, meta-gradient
methods have been widely adopted in deep learning and have demonstrated promising performance
in both supervised learning and RL. For instance, they have been used to tune learning rates
automatically, thereby accelerating deep neural network training in supervised learning (Jacobs
1988, Sutton 1992a;b, Schraudolph and Sejnowski 1995, Schraudolph 1998; 1999; 2002). In RL,
beyond tuning learning rates for improved adaptation (Bagheri et al. 2014, Young et al. 2019),
meta-gradient methods have been applied to learn loss functions that significantly enhance learning
efficiency (Houthooft et al. 2018, Kirsch et al. 2020, Bechtle et al. 2021), improve exploration
strategies based on prior experience (Gupta et al. 2018), adapt dynamic models online (Nagabandi
et al. 2019), and discover update rules for RL by interacting with diverse environments (Oh et al.

2020, Kirsch et al. 2022).

28

Chapter 3

Memory-Efficient Reinforcement
Learning with Value-Based Knowledge

Consolidation

In reinforcement learning (RL), an agent receives a non-IID stream of experience due to changes
in policy, state distribution, the environment dynamics, or simply due to the inherent structure of
the environment (Alt et al. 2019). This leads to catastrophic forgetting that previous learning is
overridden by later training, resulting in deteriorating performance during single-task training (Ghi-
assian et al. 2020, Pan et al. 2022a). To mitigate this problem, Lin (1992) equipped the learning
agent with experience replay, storing recent transitions collected by the agent in a buffer for future
use. By storing and reusing data, the experience replay buffer alleviates the problem of non-IID
data and dramatically boosts sample efficiency and learning stability. In deep RL, the experience
replay buffer is a standard component, widely applied in value-based algorithms (Mnih et al. 2013;
2015, van Hasselt et al. 2016), policy gradient methods (Schulman et al. 2015; 2017, Haarnoja et al.
2018, Lillicrap et al. 2016b), and model-based methods (Heess et al. 2015, Ha and Schmidhuber

2018, Schrittwieser et al. 2020).

However, using an experience replay buffer is not an ideal solution to catastrophic forgetting.

29

The memory capacity of the agent is limited by the hardware, while the environment itself may
generate an indefinite amount of observations. To store enough information about the environment
and get good learning performance, current methods usually require a large replay buffer (e.g.,
a buffer of a million images). The requirement of a large buffer prevents the application of RL
algorithms to the real world since it creates a heavy memory burden, especially for onboard and
edge devices (Hayes et al. 2019, Hayes and Kanan 2022). For example, Wang et al. (2023) showed
that the performance of SAC (Haarnoja et al. 2018) decreases significantly with limited memory
due to hardware constraints of real robots. Smith et al. (2023) demonstrated that a quadruped
robot can learn to walk from scratch in 20 minutes in the real-world. However, to be able to train
outdoors with enough memory and computation, the authors had to carry a heavy laptop tethered
to a legged robot during training, which makes the whole learning process less human-friendly. The

world is calling for more memory-efficient RL algorithms.

In this chapter, we propose memory-efficient RL algorithms based on the deep Q-network (DQN)
algorithm. Specifically, we assign a new role to the target neural network, which was introduced
originally to stabilize training (Mnih et al. 2015). In our algorithms, the target neural network plays
the role of a knowledge keeper and helps consolidate knowledge in the action-value network through
a consolidation loss. We also introduce a tuning parameter to balance learning new knowledge
and remembering past knowledge. With the experiments in both feature-based and image-based
environments, we demonstrate that our algorithms, while using an experience replay buffer at least
10 times smaller compared to the experience replay buffer for DQN, still achieve comparable or even

better performance.

3.1 Understanding Forgetting from an Objective-Mismatch Per-
spective
We first use a simple example in supervised learning to shed some light on catastrophic forgetting

from an objective-mismatch perspective. Let D be the whole training dataset. We denote the true

objective function on D as Lp(6;), where 6; is a set of parameters at time-step ¢. Denote By as

30

a subset of D used for training at time-step t. We expect to approximate Lp(6;) with Lp,(0;).
For example, B; could be a mini-batch sampled from D. It could also be a sequence of temporally
correlated samples when samples in D come in a stream. When B; is IID (e.g., sampling B;
uniformly at random from D), there is no objective mismatch since Lp(6;) = Ep,~p[Lp,(0:)] for a
specific t. However, when B, is non-11D, it is likely that Lp(6;) # Ep,~p[Lp,(0:)], resulting in the
objective mismatch problem. The mismatch between optimizing the true objective and optimizing
the objective induced by B; often leads to catastrophic forgetting. Without incorporating additional
techniques, catastrophic forgetting is highly likely when SGD algorithms are used to train neural

networks given non-1ID data—the optimization objective is simply wrong.

To demonstrate how objective mismatch can lead to catastrophic forgetting, we perform a regres-
sion experiment. Specifically, a neural network is trained to approximate a sine function y = sin(7z),
where z € [0,2]. To get non-IID input data, we consider two-stage training. In Stage 1, we generate
training samples (z,y), where z € [0,1] and y = sin(7x). For Stage 2, x € [1,2] and y = sin(7x).
The neural network was a multi-layer perceptron with hidden layers [32,32] and ReLU activation
functions. The network is first trained with samples in Stage 1 in the traditional supervised learn-
ing style. After that, we continue training the network in Stage 2. We used Adam optimizer with
learning rate 0.01. The mini-batch size was 32. For each stage, we trained the network with 1,000

mini-batch updates. Finally, we plot the learned function after the end of training for each stage.

As shown in Figure 3.1(a), after Stage 1, the learned function fits the true function on x € [0, 1]
almost perfectly. At the end of Stage 2, the learned function also approximates the true function on
x € [1,2] well. However, the network catastrophically forgets function values it learned on x € [0, 1].
As stated above, due to input distribution shift, the objective function we minimize is defined by
training samples only from one stage (i.e., € [0, 1] or x € [1,2]) that are not enough to reconstruct
the true objective properly which is defined on the whole training set (i.e., x € [0,2]). Much of the

previously learned knowledge is lost while optimizing a wrong objective.

A similar phenomenon also exists in single RL tasks. Specifically, we show that, without a

large replay buffer, DQN can easily forget the optimal action after it has learned it. We test DQN

31

1.0+
0.5
0.0 +
>
-0.5
—==Input boundary
=104 —— True function
—— Learned function after Stage 1
—— Learned function after Stage 2

T T T
0.0 0.5 1.0 1.5 2.0

X

Figure 3.1: A visualization of learned functions trained with SGD. In Stage 1, we generate training
samples (z,y), where x € [0,1] and y = sin(nz). In Stage 2, x € [1,2] and y = sin(7wz). The blue
dotted line shows the boundary of the input space for Stage 1 and 2. Clearly, after Stage 2, the
network catastrophically forgets function values it learned in Stage 1.

in Mountain Car (Sutton and Barto 2018), with and without using a large replay buffer. Denote
DQ@N(S) as DQN using a tiny (i.e., 32) experience replay buffer. We first randomly sample a state
S and then record its greedy action (i.e., arg max, Q(S,a)) through the whole training process, as
shown in Figure 3.2.! Note that the optimal action for this state is 1. We perform many runs
to verify the result and only show the single-run result here for better visualization. We observe
that, when using a large buffer (i.e., 10K), DQN does not suffer much from forgetting. However,
when using a small buffer (i.e., 32), DQN(S) keeps forgetting and relearning the optimal action,
demonstrating the forgetting issue in single RL tasks. MeDQN(U) is our algorithm which will be
introduced later. As shown in Figure 3.2, MeDQN(U) consistently chooses the optimal action 1 as
its greedy action and suffers much less from forgetting, even though it also uses a tiny replay buffer

with size 32.
'To be specific, the randomly sampled state is S = [—0.70167243,0.04185214].

32

C -
S !
©
<
> 04
®
1) DQN
.
(D -1 T T T T T T
0 20000 40000 60000 80000 100000
C -
S !
©
<
> 04
®
$ QN(S)
(D -1 T T T T T T
0 20000 40000 60000 80000 100000
c -
S !
2
(&)
<
> 04
B
3 —— MeDQN(U)
(D -1 T T T T T T
0 20000 40000 60000 80000 100000

Step

Figure 3.2: The greedy actions of a randomly sampled state for different methods during training
in Mountain Car. There are 3 actions in total, and the optimal action is 1. Without a large replay
buffer, DQN(S) keeps forgetting and relearning the optimal action, while DQN and MeDQN(U)
suffer much less from forgetting.

3.2 Related Work

The key to reducing catastrophic forgetting is to preserve past acquired knowledge while acquiring
new knowledge. In this section, we will first discuss existing methods for continual supervised
learning and then methods for continual RL. Since we can not list all related methods here, we

encourage readers to check recent surveys (Khetarpal et al. 2022, Delange et al. 2021).

3.2.1 Supervised Learning

In the absence of memory constraints, rehearsal methods, also known as replay, are usually con-
sidered one of the most effective methods in continual supervised learning (Kemker et al. 2018,
Farquhar and Gal 2018, Van de Ven et al. 2022, Delange et al. 2021). Concretely, these methods

retain knowledge explicitly by storing previous training samples (Rebuffi et al. 2017, Riemer et al.

33

2018, Hayes et al. 2019, Aljundi et al. 2019a, Chaudhry et al. 2019, Jin et al. 2020). In generative
replay methods, samples are stored in generative models rather than in a buffer (Shin et al. 2017,
Kamra et al. 2017, Van de Ven and Tolias 2018, Ramapuram et al. 2020, Choi et al. 2021). These
methods exploit a dual memory system consisting of a student and a teacher network. The current
training samples from a data buffer are first combined with pseudo samples generated from the
teacher network and then used to train the student network with knowledge distillation (Hinton
et al. 2014). Some previous methods carefully select and assign a subset of weights in a large
network to each task (Mallya and Lazebnik 2018, Sokar et al. 2021, Fernando et al. 2017, Serra
et al. 2018, Masana et al. 2021, Li et al. 2019, Yoon et al. 2018) or assign a task-specific network
to each task (Rusu et al. 2016, Aljundi et al. 2017). Changing the update rule is another approach
to reducing forgetting. Methods such as GEM (Lopez-Paz and Ranzato 2017), OWM (Zeng et al.
2019), and ODG (Farajtabar et al. 2020) protect obtained knowledge by projecting the current
gradient vector onto some constructed space related to previous tasks. Finally, parameter regu-
larization methods (Kirkpatrick et al. 2017, Schwarz et al. 2018, Zenke et al. 2017, Aljundi et al.
2019b) reduce forgetting by encouraging parameters to stay close to their original values with a

regularization term so that more important parameters are updated more slowly.

3.2.2 Reinforcement Learning

RL tasks are natural playgrounds for continual learning research since the input is a stream of
temporally structured transitions (Khetarpal et al. 2022). In continual RL, most works focus on
incremental task learning where tasks arrive sequentially with clear task boundaries. For this setting,
many methods from continual supervised learning can be directly applied, such as EWC (Kirkpatrick
et al. 2017) and MER (Riemer et al. 2018). Many works also exploit similar ideas from continual
supervised learning to reduce forgetting in RL. For example, Ammar et al. (2014) and Mendez et al.
(2020) assign task-specific parameters to each task while sharing a reusable knowledge base among
all tasks. Mendez et al. (2022) and Isele and Cosgun (2018) use an experience replay buffer to store
transitions of previous tasks for knowledge retention. The above methods cannot be applied to our

case directly since they require either clear task boundaries or large buffers. The student-teacher

34

dual memory system is also exploited in multi-task RL, inducing behavioral cloning by function
regularization between the current network (the student network) and its old version (the teacher
network) (Rolnick et al. 2019, Kaplanis et al. 2019, Atkinson et al. 2021). Note that in continual
supervised learning, there are also methods that regularize a function directly (Shin et al. 2017,
Kamra et al. 2017, Titsias et al. 2020). Our work is inspired by this approach in which the target
Q neural network plays the role of the teacher network that regularizes the student network (i.e.,

current (neural network) directly.

In single RL tasks, the forgetting issue is under-explored and unaddressed, as the issue is masked
by using a large replay buffer. In this work, we aim to develop memory-efficient single-task RL

algorithms while achieving high sample efficiency and training performance by reducing forgetting.

3.3 MeDQN: Memory-Efficient Deep Q-Network

In this section, we present our method. We begin by introducing knowledge consolidation, which

forms the foundation of our approach. We then introduce two variants of the proposed method.

3.3.1 Knowledge Consolidation

Originally, Hinton et al. (2014) proposed distillation to transfer knowledge between different neural
networks effectively. In this thesis, we refer to knowledge consolidation as a special case of distillation
that transfers information from an old copy of this network (e.g., the target network, parameterized
by 67) to the network itself (e.g., the current network, parameterized by 6), consolidating the
knowledge that is already contained in the network. Unlike methods like EWC (Kirkpatrick et al.
2017) and SI (Zenke et al. 2017) that regularize parameters, knowledge consolidation regularizes

the function directly. Formally, we define the (vanilla) consolidation loss as follows:

Ll/onsolid(e) = E(S,A)Np(-,~) [(Q(Sa Aa 9) - Q(Sv Aa 9_))2:| 5

35

where p(s,a) is a sampling distribution over the state-action pair s,a. To retain knowledge, the
state-action space should be covered by p(s, a) sufficiently, such as p(s,a) = d™(s)w(als) or p(s,a) =
d™(s)u(a), where 7 is the e-greedy policy, d™ is the stationary state distribution of 7, and p is
a uniform distribution over A. Our preliminary experiment shows that p(s,a) = d™(s)u(a) is a
better choice compared with p(s,a) = d™(s)m(als); so we use p(s,a) = d"(s)u(a) in this work. To

summarize, the following consolidation loss is used in this work:

Leonsotia(8) = Esear | S (Q(S, A4:6) — Q(S, A:67))° | | (3.1)
AcA

Intuitively, minimizing the consolidation loss can preserve previously learned knowledge by pe-
nalizing Q(s,a;0) for deviating from Q(s,a;0~) too much. In general, we may also use other
loss functions, such as the Kullback—Leibler (KL) divergence Dxy (7 (:|s)||7(+|s)), where = and #
can be softmax policies induced by action values, that is, m(a|s) x exp(Q(s,a;#0)) and 7(als)
exp(Q(s,a;07)). For simplicity, we use the mean squared error loss, which also proves to be effec-

tive, as shown in our experiments.
Given a mini-batch B consisting of transitions 7 = (s,a,r, s’), the DQN loss is defined as
1 2
Lpgn(0) = B ; (7" + 'y max Q(s',d';07) — Q(s, a; 9)> .

We combine the two losses to obtain the final training loss for our algorithm
L= LDQN +)\Lconsolid;

where) is a positive scalar.

Note that Lpgn helps the) network learn new knowledge by correcting wrong predictions
of Q). In contrast, L.onsoiiq 18 used to preserve old knowledge by consolidating information from
the target network to the current network. By combining them with a weighting parameter A,
we balance learning and preserving knowledge simultaneously. Moreover, since Lconsolia acts as a

functional regularizer, the parameter # may change significantly as long as the function values of

36

Algorithm 3 Memory-Efficient DQN with Uniform State Sampling (MeDQN(U))

1: Initialize a small experience replay buffer D

2: Initialize state lower bound spow to |00, -+ , 00| and upper bound sgrgp to [—oo, -+, —o0]
3: Initialize action-value function with random weights 6

4: Initialize target action-value function with random weights 6= = 6

5: Observe initial state s

6: while agent is interacting with the environment do

7 Update state bounds: spow = min(spow, s), sgrecag = max(Sgrgm, s)

8: Take action a chosen by e-greedy based on Q, observe r, s’

9: Store transition (s, a,r,s’) in D and update state s = &’

10: for every Ciyrrent steps do

11: Get all transitions B = {(s,a,r,s')} in D

12: for i =1to E do

13: Compute DQN loss Lpgn

14: Sample a random mini-batch states B¢ = {s} uniformly from [spow, sgrcH]
15: Compute consolidation loss LCU(m soliq lven Bstate

16: Compute the final training loss: L = Lpgon +)\Lgonsolid

17: Perform a gradient descent step on L with respect to 6

18: Reset 0~ = 0 for every Ciarget steps

the current network remain close to the target network.

There is still one problem left: how to get d™(s)? In general, it is hard to compute the exact

form of d"(s). Instead, we use random sampling, as we will show next.

3.3.2 Uniform State Sampling

One of the simplest ways to approximate d”(s) is with a uniform distribution on S. Formally, we

define this version of consolidation loss as

L(c{msolid(e) - IESNU Z (Q(S; A; 9) - Q(S,A7 9_))2 ,
AcA

where U is a uniform distribution over the state space S.

The intuition behind uniform state sampling is that sometimes we do not necessarily need on-
policy states (i.e., states sampled from d™) to achieve good knowledge consolidation. Although
randomly uniformly generated states may not be meaningful, they are enough to induce good

knowledge consolidation (i.e., Leonsoria = 0) in some cases. For example, considering linear function

37

approximations that Q(s,a;0) = z'6 and Q(s,a;07) = x'6~, where § € R", §~ € R", and
x = (s,a) € R™. To achieve perfect knowledge consolidation (Lcopsoriqa = 0), it is required to find
0 = 0~ by minimizing Leopsoria- Let {z1,22,...,2,} be n points randomly uniformly sampled
from S x A and set y; = xiTG_ for every i. Denote X = [z1;---;2,) and Y = [y1, -+ ,yn]"
The problem can be reformulated as finding € such that X = Y. It is known that the random
matrix X is full rank with a high probability (Cooper 2000). In this case, we can get the optimal
6 with = (XT)~'Y and thus achieve perfect knowledge consolidation (Lconsorig = 0). Note that
{x1,xa,...,x,} are all randomly generated; they are not necessary to be state-action pairs sampled
from real trajectories. Note that perfect knowledge consolidation (Lconsoria = 0) is not preferred in
practice, since we still need to update the Q function during training for better policy evaluation.

Instead, we want to achieve good knowledge consolidation by keeping L.onsotid close to zero.

Theoretically, assuming that the size of the state space |S| is finite, we have Pr(S = s) = 1/|S]|

for any s € S. Together with d™(s) < 1, we then have

Leonsotia(0) = > d"(s) Y (Q(s,a;0) — Q(s,a;67))
sES acA
< ZZ (s,a;0) — Q(s,a; 9_))2
seSacA
|S’Lconsolzd(9) (32)

Essentially, minimizing |S|Lconsolzd minimizes an upper bound of L.ynsoiid- As long as Lconsolzd is
small enough, we can achieve good knowledge consolidation with a low consolidation loss L onsotid-

In the extreme case, LY 4 = 0 leads to Lconsotia = 0.

consoli

In practice, we may not know & in advance. To solve this problem, we maintain state bounds
spow and sprgp as the lower and upper bounds of all observed states, respectively. Note that both
srow and sgrag are two state vectors with the same dimension as a state in S. Assume S C R”.

Initially, we set spow = [00, -+ ,00] € R" and syrgg = [—00,--+,—00] € R™. For each newly

38

received s € R", we update state bounds with

srow = min(spow, s) and sgrgry = max(sgiGH, S)-

Here, both min and max are element-wise operations. During training, we sample pseudo-states

uniformly from the interval [spow, sgram] to help compute the consolidation loss.

We name our algorithm that uses uniform state sampling as memory-efficient DQN with uni-
form state sampling, denoted as MeDQN(U) and shown in Algorithm 3. Compared with DQN,
MeDQN(U) has several changes. First, the experience replay buffer D is tiny (Line 1). In prac-
tice, we set the buffer size to the mini-batch size to apply mini-batch gradient descent. Second,
we maintain state bounds and update them at every step (Line 7). Moreover, to extract as much
information from a small replay buffer, we use the same data to train the @) function for E times
(Line 13-19). In practice, we find that a small E (e.g.,1-4) is enough to perform well. Finally, we
apply knowledge consolidation by adding a consolidation loss to the DQN loss as the final training
loss (Line 16-17).

Algorithm 4 Memory-Efficient DQN with Real State Sampling (MeDQN(R))

1: Initialize an experience replay buffer D

2: Initialize the current action-value function with random weights 6

3: Initialize the target action-value function with random weights §= = 6
4: Observe initial state s

5: while agent is interacting with the environment do

6 Choose action a by e-greedy based on Q)

7 Take action a, observe r, s’

8 Store transition (s, a,r,s’) in D and update state s = ¢’

9 for every Ciyrrent steps do

10: Sample a random mini-batch of transitions B = {(s, a,r,s")} from D
11: for:=1to F do

12: Compute DQN loss Lpgn

13: Sample a random mini-batch of states B¢ = {s} from D

14: Compute consolidation loss Lgm soliq lven Bstate

15: Compute the final training loss: L = Lpgn +)\Lgmsolid

16: Perform a gradient descent step on L with respect to 6

17: Reset 0~ = 0 for every Ciarget steps

39

3.3.3 Real State Sampling

When the state space S is super large, the agent is unlikely to visit every state in S. Thus, for a
policy 7, the visited state set S™ := {s € S|d™(s) > 0} is expected to be a very small subset of S.
In this case, a uniform distribution over S is far from a good estimation of d™. A small number of
states (e.g., one mini-batch) generated from uniform state sampling cannot cover 8™ well enough,
resulting in poor knowledge consolidation for the @) function. In other words, we may still forget
previously learned knowledge (i.e., the action values over S™ x A) catastrophically. This intuition
can also be understood from the view of upper bound minimization. In Equation (3.2), as the upper

bound of Leopsetids |S |Lgmsolid is large when S is large. Even if Lgonsolz‘ 4 1s minimized to a small

U
consoli

value, the upper bound |S|L 4 may still be too large, leading to poor consolidation.

To overcome the shortcoming of uniform state sampling, we propose real state sampling. Specif-
ically, previously observed states are stored in a state replay buffer D, and real states are sampled
from Dy for knowledge consolidation. Compared with uniform state sampling, states sampled from
a state replay buffer have a larger overlap with S™, acting as a better approximation of d™. Formally,

we define the consolidation loss using real state sampling as

Lleatia(®) = Es~p, | > (Q(S, 4:6) = Q(S, 4:67))° | .
AcA
In practice, we sample states from the experience replay buffer D. We name our algorithm that
uses real state sampling as memory-efficient DQN with real state sampling, denoted as MeDQN(R).
The algorithm description is shown in Algorithm 4. Similar to MeDQN(U), we also use the same
data to train the @ function for E times and apply knowledge consolidation by adding a consolidation
loss. The main difference is that the experience replay buffer used in MeDQN(R) is relatively large
while the experience replay buffer in MeDQN(U) is tiny (i.e., one mini-batch size). However, as we
will show next, the experience replay buffer used in MeDQN(R) can still be significantly smaller

than the experience replay buffer used in DQN.

40

3.4 Experiments

In this section, we first verify that knowledge consolidation helps mitigate the objective mismatch
problem and reduce forgetting. Next, we propose a strategy to better balance learning and remem-
bering. We then demonstrate that our algorithms achieve comparable or superior performance to
DQN in both low-dimensional and high-dimensional tasks. Moreover, we verify through an ab-
lation study that knowledge consolidation is key to achieving both memory efficiency and high
performance. Finally, we show that knowledge consolidation also enhances the robustness of our

algorithms to varying buffer sizes.

3.4.1 The Effectiveness of Knowledge Consolidation

To show that knowledge consolidation helps mitigate the objective mismatch problem, we first apply
it to solve the task of approximating sin(7x), as presented in Section 3.1. Denote the neural network
and the target neural network as f(x;60) and f(x;607), respectively. The true loss function is defined
as Lyrue = Eyepo2)[(f(2560) — y)?], where y = sin(rz). We first train the network f(z;6) in Stage 1
(i.e., z € [0, 1]) without knowledge consolidation. We also maintain input bounds [xrow, zHrcH],
similar to Algorithm 3. At the end of Stage 1, we set #~ = 6. At this moment, both f(x;6) and
f(x;07) are good approximations of the true function for z € [0,1]; and [zrLow,zHIcH] = [0, 1].
Next, we continue to train f(z;6) with = € [1,2]. To apply knowledge consolidation, we sample Z
from input bounds [zrow, g1cm] uniformly. Finally, we add the consolidation loss to the training

loss and get the following:

L(0) = Evep o) [(f (:0) = 9)*] + Eiclopow oo (£ (@ 0) — f(2567))7].

By adding the consolidation loss, L becomes a good approximation of the true loss function, which
helps preserve the knowledge learned in Stage 1 while learning new knowledge in Stage 2 (Figure 3.3).
Note that in the whole training process, we do not save previously observed samples (z,y) explicitly.

The knowledge of Stage 1 is stored in the target model f(z;0) and then consolidated to f(x;8).

41

1.0+
0.5
0.0 1
>
_05 —
—==Input boundary
=10 —— True function
—— Learned function after Stage 1
—— Learned function after Stage 2

T T T
0.0 0.5 1.0 1.5 2.0

X

Figure 3.3: A visualization of learned functions trained with SGD and knowledge consoidation. In
Stage 1, we generate training samples (z,y), where = € [0,1] and y = sin(rz). In Stage 2, x € [1, 2]
and y = sin(mz). The blue dotted line shows the boundary of the input space for Stage 1 and 2. It
shows that knowledge consoidation helps preserve the knowledge learned in Stage 1 while learning
new knowledge in Stage 2.

Next, we show that combined with knowledge consolidation, MeDQN(U) is able to reduce the
forgetting issue in single RL tasks even with a tiny replay buffer. We repeat the RL training process
in Section 3.1 for MeDQN(U) and record its greedy action during training. As shown in Figure 3.2,
while DQN(S) keeps forgetting and relearning the optimal action, both DQN and MeDQN(U)
are able to consistently choose the optimal action 1 as its greedy action, suffering much less for
forgetting. Note that both MeDQN(U) and DQN(S) use a tiny replay buffer with size 32 while
DQN uses a much larger replay buffer with size 10K . This experiment demonstrates the forgetting
issue in single RL tasks and the effectiveness of our method in mitigating forgetting. More training

details in Mountain Car can be found in Section 3.4.3.

We repeat the RL training process in Section 3.1 for MeDQN(U) and record its greedy action

during training. As shown in Figure 3.2, while DQN(S) keeps forgetting and relearning the optimal

42

-200 -
c -400 -
2
0]
4
S -600 -
©
o —— A=0.01
< — A=0.1
-800 - — A=2.0
A=4.0
—— A=8.0
1000 4 —— A=0.01-4
T T T T T T
0 20000 40000 60000 80000 100000

Step

Figure 3.4: A comparison of different strategies to balance learning and preservation for MeDQN(U)
in MountainCar-v0. When A is small, MeDQN(U) learns quickly initially but becomes slower and
unstable over time, leading to performance degradation. Increasing A slows early learning but
improves training stability and final performance. All results are averaged over 20 runs, with the
shaded area representing two standard errors.

action, both DQN and MeDQN(U) are able to consistently choose the optimal action 1 as its greedy
action, suffering much less for forgetting. Note that both MeDQN(U) and DQN(S) use a tiny replay
buffer with size 32 while DQN uses a much larger replay buffer with size 10K. This experiment
demonstrates the forgetting issue in single RL tasks and the effectiveness of our method in mitigating

forgetting. More training details in Mountain Car can be found in Section 3.4.3.

3.4.2 Balancing Learning and Remembering

In Section 3.3.1, we claimed that A could balance between learning new knowledge and preserving
old knowledge. In this section, we used Mountain Car (Sutton and Barto 2018) as a testbed to
verify this claim. Specifically, a fixed X is chosen from {0.01,0.1,2,4,8}. The mini-batch size is 32.

The experience replay buffer size in MeDQN(U) is 32. The update epoch E = 4, the target network

43

update frequency Cigrger = 100, and the current network update frequency Ceyrrent = 1. We chose
learning rate from {le —2,3e — 3, 1le — 3,3e — 4, le — 4} and reported the best results averaged over

20 runs for different A, as shown in Figure 3.4.

When A is small (e.g., A = 0.1 or A = 0.01), giving a small weight to the consolidation loss,
MeDQN(U) learns fast at the beginning. However, as training continues, the learning becomes
slower and unstable; the performance drops. As we increase A, although the initial learning is
getting slower, the training process becomes more stable, resulting in higher performance. These
phenomena align with our intuition. At first, not much knowledge is available for consolidation;
learning new knowledge is more important. A small A lowers the weight of L.ynsoiq in the training
loss, thus speeding up learning initially. As training continues, more knowledge is learned, and
knowledge preservation is vital to performance. A small \ fails to protect old knowledge, while a

larger A helps consolidate knowledge more effectively, stabilizing the learning process.

Inspired by these results, we propose a new strategy to balance learning and preservation.
Specifically, A is no longer fixed but linearly increased from a small value Agq+ to a large value
Aend- This mechanism encourages knowledge learning at the beginning and information retention
in later training. We increased A from 0.01 to 4 linearly with respect to the training steps for this
experiment. In this setting, we observed that learning is fast initially, and then the performance
stays at a high level stably towards the end of training. Given the success of this linearly increasing

strategy, we applied it in all of the following experiments for MeDQN.

Average Return

Average Return

Average Return

— DoN
DON(S)
— MeDQN(U)

— Dan — oon

— MeDQN(U) 500 — MeDQN(U)

2000 40000 60000 80000 100000 O 20000 40000 60000 80000 100000 04 06 08 10 1 050 075 100 125 L5
Step Step Step e Step

(a) MountainCar-v0 (b) Acrobot-v1 (c) Catcher (d) Pixelcopter

Figure 3.5: Evaluation in low-dimensional tasks. The results for MountainCar-vO and Acrobot-v1
are averaged over 20 runs. The results for Catcher and Pixelcopter are averaged over 10 runs. The
shaded areas represent two standard errors. MeDQN(U) outperforms DQN in all four tasks, even
though it uses an experience replay buffer with one mini-batch size.

44

3.4.3 Evaluation in Low-Dimensional Tasks

We choose four tasks with low-dimensional inputs from Gym (Brockman et al. 2016) and PyGame
Learning Environment (Tasfi 2016): MountainCar-v0 (2), Acrobot-v1 (6), Catcher (4), and Pixel-

copter (7), where numbers in parentheses are input state dimensions.

For DQN, we use the same hyper-parameters and training settings as in Lan et al. (2020).
Specifically, for MountainCar-v0 and Acrobot-v1, the neural network is a multi-layer perceptron
with hidden layers [32, 32]; the best learning rate is selected from {le—2,3e—3,1e—3,3e—4,1le—4}
with grid search; Adam is used to optimize network parameters; all algorithms are trained for 1e5
steps. For Catcher and Pixelcopter, the neural network is a multi-layer perceptron with hidden
layers [64, 64]; the best learning rate is selected from {le — 3,3e —4, le — 4,3e — 5, le — 5} with grid
search; RMSprop is used to optimize network parameters. In Catcher, algorithms are trained for
1.5e6 steps; in Pixelcopter, algorithms are trained for 2e6 steps. The discount factor is 0.99. The
mini-batch size is 32. The buffer size for DQN is 10,000 in all tasks. For first 1,000 exploration
steps, we only collected transitions without learning. e-greedy is applied as the exploration strategy

with € decreasing linearly from 1.0 to 0.01 in 1,000 steps. After 1,000 steps, € is fixed to 0.01.

For MeDQN, Agtart = 0.015 Aepq is chosen from {1,2,4}; E is selected from {1,2,4}. We choose
Ceurrent in {1,2,4,8}. Moreover, we include DQN(S) as another baseline, which uses a tiny (i.e.,
32) replay buffer. The buffer size is the only difference between DQN and DQN(S). The experience
replay buffer size for MeDQN(U) is 32. We set Agtqrt = 0.01 for MeDQN(U) and tune learning rate
for all algorithms. Except for tuning the update epoch E, the current network update frequency
Ceurrent, and Aepg, we use the same hyper-parameters and training settings as DQN for MeDQN(U).

Other hyper-parameter choices are presented in Table 3.1.

For MountainCar-v0 and Acrobot-vl, we report the best results averaged over 20 runs. For
Catcher and Pixelcopter, we report the best results averaged over 10 runs. The learning curves
of the best results for all algorithms are shown in Figure 3.5, where the shaded area represents
two standard errors. All curves are smoothed using an exponential average. As we can see from

Figure 3.5, when using a small buffer, DQN(S) has higher instability and lower performance than

45

Table 3.1: The hyper-parameters of different algorithms for tasks in Figure 3.5.

(a) MountainCar-v0

Hyper-parameter DQN DQN(S) MeDQN(U)

learning rate le-2 le-3 le-3
experience replay buffer size led 32 32
E / / 4
)\end / / 4
Ctarget 100 100 100
Ccurrent 8 1 1

(b) Acrobot-v1

Hyper-parameter DQN DQN(S) MeDQN(U)

learning rate le-3 3e-4 3e-4
experience replay buffer size led 32 32
E / / 1
)\end / / 2
Crarget 100 100 100
Ccurrent 1 1 1

(c) Catcher

Hyper-parameter

DQN DQN(S) MeDQN(U)

learning rate le-4
experience replay buffer size led
E /
)\end /
Ctarget 200
Ccurrent 1

le-5 3e-5
32 32
/ 4
/ 4
200 200
1 2

(d) Pixelcopter

Hyper-parameter

DQN DQN(S) MeDQN(U)

learning rate 3e-5
experience replay buffer size led
E /
Aend /
Ctm"get 200
Ccurrent 1

le-5 3e-4
32 32
/ 1
/ 1
200 200
1 8

46

— boN
DQN(S)

— MeDQN(U)

—— MeDQN(R)

— oon
30 DQN(S)

— MeDQN(U)
254 — MeDQN(R)

175

Average Return
Average Return
Average Return

— DboN
DQN(S) 10

—— MeDON(U)

—— MeDQN(R)

— DoN
DON(S) 5

— MeDQN(U)

—— MeDQN(R) o

z 3 i B o H 2 3 i 5 0 1 2 3 i B oo o2 o4 o6
Step 1e6 Step 1e6 Step e6 Step

(a) Asterix (MinAtar) (b) Breakout (MinAtar) (c) Space Invaders (MinAtar) (d) Seaquest (MinAtar)

Figure 3.6: Evaluation in high-dimensional MinAtar tasks. All results are averaged over 10 runs,
with the shaded areas representing two standard errors. MeDQN(R) is comparable with DQN even
though it uses a much smaller experience replay buffer (10% of the replay buffer size in DQN).

DQN, which uses a large buffer. MeDQN(U) outperforms DQN in all four games. The results
are inspiring, given that MeDQN(U) only uses a tiny experience replay buffer. We conclude that
MeDQN(U) is much more memory-efficient while achieving similar or better performance compared
to DQN in low-dimensional tasks. Given that MeDQN(U) already performs well while being very

memory-efficient, we did not further test MeDQN(R) in these low-dimensional tasks.

3.4.4 Evaluation in High-dimensional Tasks

To further evaluate our algorithms, we choose four tasks with high-dimensional image inputs from
MinAtar (Young and Tian 2019): Asterix (10x10x4), Seaquest (10x10x10), Breakout (10x10x4),

and Space Invaders (10 x 10 x 6), where numbers in parentheses are input dimensions.

For DQN, we reuse the hyper-parameters and neural network setting in Young and Tian (2019).
The discount factor is 0.99. The mini-batch size is 32. In Seaquest (MinAtar), all algorithms are
trained for 1le7 steps. Except that, all algorithms are trained for 5e6 steps in other tasks. For
the first 5,000 exploration steps, we only collect transitions without learning. e-greedy is applied
as the exploration strategy with e decreasing linearly from 1.0 to 0.1 in 5,000 steps. After 5,000
steps, € was fixed to 0.1. Following Young and Tian (2019), we used smooth L1 loss in PyTorch
and centered RMSprop optimizer with o = 0.95 and ¢ = 0.01. The best learning rate was chosen
from {3e — 3,1e — 3,3e — 4,1e — 4,3e — 5} with grid search. We also reused the settings of neural
networks. For both MeDQN(R) and MeDQN(U), Astart = 0.01; Aepg was chosen from {2,4}; E was
selected from {1,2}. We chose Ceyprent in {4, 8,16,32}.

47

For DQN, the buffer size is 100,000 and the target network update frequency Cjgrger = 1,000.
For MeDQN(R), Ciarger = 1,000 and the buffer size is 10% of the buffer size in DQN, i.e., 10, 000.
The replay buffer size for MeDQN(U) is 32. For MeDQN(U), a smaller Cyqpget is better and we set

Ciarget = 300. Other hyper-parameter choices are presented in Table 3.2.

The learning curves of best results are shown in Figure 3.6, averaging over 10 runs with the
shaded areas representing two standard errors. The depicted return is averaged over 500 episodes
and the curves are smoothed using an exponential average. Notice that with a small experience
replay buffer, DQN(S) performs much worse than all other algorithms, including MeDQN(U), which
also uses a small experience replay buffer of the same size as DQN(S). For tasks with a relatively
lower input dimension, such as Asterix and Breakout, both MeDQN(R) and MeDQN(U) match up
with or even outperform DQN. For Seaquest and Space Invaders which have larger input dimen-
sions, MeDQN(R) is comparable with DQN even though it uses a much smaller experience replay
buffer (10% of the replay buffer size in DQN). Meanwhile, the performance of MeDQN(U) is sig-
nificantly lower than MeDQN(R), mainly due to different state sampling strategies. As discussed
in Section 3.3.3, when the state space S is too large as the cases for Seaquest and Space Invaders,
states generated with uniform state sampling can not cover visited states well enough, resulting in
poor knowledge consolidation. In this circumstance, storing and sampling real states is usually a
better approach. Overall, we conclude that MeDQN(R) is more memory-efficient than DQN while

achieving comparably high performance and high sample efficiency.

3.4.5 An Ablation Study of Knowledge Consolidation

In this section, we present an ablation study of knowledge consolidation in Seaquest. By setting
Astart = Aenda = 0 in MeDQN(R), we removed the consolidation loss from the training loss and
MeDQN(R) is reduced to DQN with E updates for each mini-batch of transitions. Except this, all
other training settings are the same as MeDQN(R) with consolidation. For example, we also tuned E
and Ceyprent for MeDQN(R) without consolidation. The averaged final returns with standard errors

are presented in Table 3.3 which shows that MeDQN(R) performs better with consolidation than

48

Table 3.2: The hyper-parameters of different algorithms for MinAtar tasks in Figure 3.6.

(a) Asterix (MinAtar)

Hyper-parameter DQN DQN(S) MeDQN(U) MeDQN(R)
learning rate le-4 3e-b le-3 3e-4
experience replay buffer size led 32 32 led

E / / 2 2

Aend / / 2 2
Crarget 1000 1000 300 1000
Ccurrent 1 1 16 8

(b) Breakout (MinAtar)

Hyper-parameter DQN DQN(S) MeDQN(U) MeDQN(R)
learning rate le-3 3e-b 3e-3 3e-4
experience replay buffer size leb 32 32 led

E / / 1 2

Aend / / 2 4
Ciarget 1000 1000 300 1000
Ccurrent 1 1 8 4

(c) Space Invaders (MinAtar)

Hyper-parameter DQN DQN(S) MeDQN(U) MeDQN(R)
learning rate 3e-4 3e-b le-3 3e-4
experience replay buffer size leb 32 32 led

E / / 1 2

Aend / / 4 2
Crarget 1000 1000 300 1000
Ccurrent 1 1 32 4

(d) Seaquest (MinAtar)

Hyper-parameter DQN DQN(S) MeDQN(U) MeDQN(R)
learning rate le-4 3e-b 3e-3 3e-4
experience replay buffer size 1leb 32 32 led

E / / 1 1

Aend / / 2 4
Ctarget 1000 1000 300 1000
Ccurrent 1 1 32 4

49

Table 3.3: An ablation study of knowledge consolidation for MeDQN(R) with different buffer sizes,
tested in Seaquest (MinAtar). MeDQN(R) performs better with consolidation than MeDQN(R)
without consolidation under different buffer sizes. All final returns are averaged over 10 runs,
shown with one standard error.

Buffer Size 1e5 led 1le3

with consolidation 25.82+1.69 27.92+1.53 17.22+0.90
w.o. consolidation 20.10+0.71 19.78 £1.19 16.04 4 0.60

MeDQN(R) without consolidation under different buffer sizes. These results proved that knowledge
consolidation is the key to the success of MeDQN(R); MeDQN(R) is not simply benefiting from
choosing a higher F or a larger Ceyrrent- It is the use of knowledge consolidation that allows

MeDQN(R) to have a smaller experience replay buffer.

3.4.6 A Study of Robustness to Different Buffer Sizes

Moreover, we study the performance of different algorithms with different buffer sizes on Seaquest
(MinAtar), which has the largest input state space. In Table 3.4, we present the averaged returns
at the end of training for MeDQN(R) and DQN with different buffer sizes. Clearly, MeDQN(R)
is more robust than DQN to buffers at various scales. A similar study in a low-dimensional task
(MountainCar-v0) is shown in Figure 3.7. Note that for MeDQN(U), m is fixed as the mini-batch
size 32. DQN performs worse and worse as we decrease the buffer size, while MeDQN(U) achieves

high performance with a tiny buffer.

Table 3.4: A study of robustness to different buffer sizes, tested in Seaquest (MinAtar). MeDQN(R)
is more robust than DQN to buffers at various scales. All final returns are averaged over 10 runs,
shown with one standard error.

buffer size 1e5 led 1le3
MeDQN(R) 25.82+1.69 27.924+1.53 17.22+0.90
DQN 2048 £0.75 21.38+£0.80 15.04 4+ 0.66

50

-150
-200 -
=
32
i
S 250
(@]
©
g
< -300 -
-350 - — DQN
—— MeDQN(U) (m=32)

10 10° 10
Log m

4

Figure 3.7: A study of robustness to different buffer sizes m in MountainCar-v0. For MeDQN(U),
m is fixed as the mini-batch size 32. DQN performs worse and worse as we decrease the buffer size
while MeDQN(U) achieves high performance with a tiny buffer. All results are averaged over 20
runs, with the shaded area representing two standard errors.

3.4.7 Additional Results in Atari Games

To further evaluate our algorithm, we conduct experiments in Atari games (Bellemare et al. 2013).
Specifically, we select five representative games recommended by Aitchison et al. (2023), including
Battlezone, Double Dunk, Name This Game, Phoenix, and Qbert. The input dimensions for all five

games are 84 x 84.

We compare our algorithm MeDQN(R) and DQN with different buffer sizes. Specifically, we use
the implementation of DQN in Tianshou (Weng et al. 2022) and implemented MeDQN(R) based
on Tianshou’s DQN.? For DQN, we use the default hyper-parameters of Tianshou’s DQN. For
MeDQN, Astart = 0.01; Aepg is chosen from {2,4}; E = 1. We choose Ceyrrent in {20,40} while the
default Ceyprrent = 10 in Tianshou’s DQN. Except those hyper-parameters, other hyper-parameters

of MeDQN are the same as the default hyper-parameters of Tianshou’s DQN.

“https://github.com/thu-ml/tianshou/blob/v0.4.10/examples/atari/atari_dqn.py

51

https://github.com/thu-ml/tianshou/blob/v0.4.10/examples/atari/atari_dqn.py

Battlezone Double Dunk Name This Game

30000 r 2 - 10000 r
O™ R 0 - o~/
20000 Y, - 5000 - i
-2 //N:}//V’M_ y WV\\’*, AR
10000 4 o /
M y -4 I~ 0 . -
0 T T T T -6 T T T T T T T T
0 10 20 30 40 50
Q*bert Frame (millions)
6000 15000 o
4000 10000 V4 o e o
2000 5000 —/’ L
0 0 -
—2000 T T T T —5000 T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Frame (millions) Frame (millions)
DQN (m=1e6) DQN (m=1e5) MeDQN(R) (m=1e5)

Figure 3.8: The return curves of various algorithms in five Atari tasks over 50 million training
frames, with different buffer sizes m. Solid lines correspond to the median performance over 5
random seeds, and the shaded areas correspond to standard errors. Though using a much smaller
buffer, MeDQN(R) (m = 1eb) outperforms DQN (m = 1e6) in three tasks significantly (i.e., Name
This Game, Phoenix, and Qbert) and matches DQN’s performance in the other two tasks.

We train all algorithms for 50M frames (i.e., 12.5M steps) and summarize results across over 5
random seeds in Figure 3.8. Note that we perform grid search to find the best hyper-parameters.
Then we rerun with the best hyper-parameters, using different random seeds. The solid lines
correspond to the median performance over 5 random seeds, while the shaded areas represent
standard errors. Though using a much smaller buffer, MeDQN(R) (m = 1e5) outperforms DQN
(m = 1e6) in three tasks significantly (i.e., Name This Game, Phoenix, and Qbert) and matches
DQN'’s performance in the other two tasks. Overall, the memory usage of a replay buffer is reduced
from 7GB to 0.7GB without hurting the agent’s performance, confirming our previous claim that

MeDQN(R) is more memory-efficient than DQN while achieving comparably high performance.

52

3.5 Conclusion

In this chapter, we proposed two memory-efficient algorithms based on DQN. Our algorithms can
find a good trade-off between learning new knowledge and preserving old knowledge. By conducting
rigorous experiments, we showed that a large experience replay buffer could be successfully replaced
by (real or uniform) state sampling, which costs less memory while achieving good performance
and high sample efficiency. Considering all above results, we suggest using MeDQN(U) for low-

dimensional tasks and MeDQN(R) for high-dimensional tasks.

53

Chapter 4

Efficient Reinforcement Learning by
Reducing Forgetting with Elephant

Activation Functions

The previous chapter shows a data-driven approach to reduce forgetting. In contrast, in this chapter,
we present a method to mitigate forgetting from an architectural approach. Specifically, researchers
have made significant progress in mitigating catastrophic forgetting and proposed many effective
methods in recent years, such as optimization-based methods (Farajtabar et al. 2020), regularization-
based methods (Riemer et al. 2018), parameter-isolation methods (Mendez et al. 2020), and replay
methods (Mendez et al. 2022). Most of these methods tackle the forgetting problem from the
algorithmic approach while the other approach, alleviating forgetting by designing neural networks
with specific properties, is less explored. There is still a limited understanding of what properties of
neural networks lead to catastrophic forgetting. Recently, Mirzadeh et al. (2022a) find that the width
of a neural network significantly affects forgetting and provide explanations from the perspectives
of gradient orthogonality, gradient sparsity, and lazy training regime. Furthermore, Mirzadeh et al.
(2022b) study the forgetting issue on large-scale benchmarks with various network architectures,

demonstrating that architectures can also play an important role in reducing forgetting.

54

The interaction between catastrophic forgetting and neural network architectures remains under-
explored. In this chapter, we aim to better understand this interaction by studying the impact of
various architectural choices of neural networks on catastrophic forgetting in single-task RL, where
many of the continual learning issues appear. Specifically, we focus on activation functions, one of
the most important elements in neural networks. Theoretically, we investigate the role of activation
functions in the training dynamics of neural networks. Experimentally, we study the effect of various
activation functions on catastrophic forgetting under the setting of continual supervised learning.
These results suggest that not only sparse representations but also sparse gradients are essential for
mitigating forgetting. Based on this discovery, we develop a new type of activation function called
elephant activation functions. They can generate sparse function values and gradients, thus enhanc-
ing neural networks’ resilience to catastrophic forgetting. To verify the effectiveness of our method,
we substitute classical activation functions with elephant activation functions in neural networks
for RL agents and test them across a range of tasks, from basic Gymnasium tasks (Towers et al.
2023) to intricate Atari games (Mnih et al. 2013). The experimental results demonstrate that, un-
der extreme memory constraints, integrating elephant activation functions into RL agents alleviates
the forgetting issue, leading to comparable or improved performance while significantly enhancing
memory efficiency. Moreover, we show that even when large replay buffers are utilized, applying

elephant activation functions remains beneficial, substantially boosting the learning performance.

4.1 Understanding the Success and Failure of Sparse Representa-

tion

Firstly, we aim to understand the effectiveness of sparse representations in catastrophic forgetting.
To be specific, we argue that sparse representations are effective in reducing forgetting in linear

function approximations but are less useful in nonlinear function approximations.

Deep neural networks can automatically generate effective representations (a.k.a. features) to
extract key properties from input data. In particular, we call a set of representations sparse when

only a small part of representations is non-zero for a given input. It is known that sparse repre-

95

sentations reduce forgetting and interference in both continual supervised learning and RL (Shen
et al. 2021, Liu et al. 2019b). Formally, let « be an input and ¢ be an encoder that transforms the
input @ into its representation ¢(x). The representation ¢(x) is sparse when most of its elements

are zeros.

First, consider the case of linear approximations. A linear function is defined as fy(x) =
w' ¢(x) : R* — R, where € R" is an input, ¢ : R” — R™ is a fixed encoder, and w € R™
is a weight vector. Assume the representation ¢(x) is sparse and non-zero (i.e., ||¢p(x)||2 > 0) for
x € R™. Next, we show that both Property 2.1 and Property 2.3 are satisfied in this case. Easy to

see Vo fw (@) = ¢(x). Together with Equation (2.15), we have

fur (®) = fu(®) = —aVL(f, F,@t) $(a) T $(ax). (4.1)

By assumption, fu(x:) # F(x:) and VL(f, F,x;) # 0. Then Property 2.1 holds since fy (%) —
fw(xr) = —aVL(f, F,x¢) ||¢(z)]|3 # 0. Moreover, it is very likely that (¢(z), ¢(x;)) ~ 0 when x #
x, due to the sparsity of ¢(x) and ¢(x;). Thus, fu () — fw(x) = —aVL(f, F,x:) (p(x), p(xr)) =
0 and Property 2.3 holds. We conclude that sparse representations successfully mitigate catastrophic

forgetting in linear approximations.

However, for nonlinear approximations, sparse representations can no longer guarantee Prop-
erty 2.3. Consider a multilayer perceptron (MLP) with one hidden layer fy(x) = u'o(Vx +b) :
R™ — R, where o is a non-linear activation function, € R®, u € R™, V € R™*" b € R™, and

w = {u, V,b}. We compute the NTK in this case, resulting in the following lemma.

Lemma 4.1 (NTK in non-linear approximations). Given a non-linear function fi,(z) = u'o(Va+
b) : R" — R, where o is a non-linear activation function, x € R", w € R™, V € R™*" b € R™,

and w = {u, V,b}. The NTK of this nonlinear function is
(VoS (), Vo fro (1)) = 0 (Ve + b) ' o(Vay + b) + u' u(z @ + 1)0’ (Vo + b) "o’ (Vay + b),
where (-,-) denotes the dot product or Frobenius inner product depending on the context.

56

Proof. Let o denote Hadamard product. By definition, we have

(Ve fuo (@), Vo fuo (1))

= (Vufw(@), Vufuw(@)) + (Vv fu(@), Vv fu(@0) + (Vb fuw(®), Vofwlx))
=(o(Vz+b),0(Va;+ b))+ (uod' (Ve + bz ,uood' (Va; + b)x,)

+ (wo o' (Vo +b),uod (Ve + b))

—o(Vz+b) o(Va,+b) + (z @+ 1) (oo (Ve +b)) ' (woo' (Va, +b)),

=o(Ve+b)To(Ve, +b) +u' u(x z, +1)o' (Ve +b) o' (Va, + b).
O

Note that the encoder ¢ is no longer fixed, and we have ¢g(x) = o(Vx + b), where 8 = {V, b}

are learnable parameters. By Lemma 4.1,

(Vo fur(®), Ve fuo (1)) = () " do(@e) +u' w(@ @ + 1)gh(x) " dp(z:). (4.2)

Compared with the NTK in linear approximations (Equation (4.1)), Equation (4.2) has an additional
term u' u(z "z + 1) (z) " ¢j(z+), due to a learnable encoder ¢g. With sparse representations, we
have ¢g () ¢ (xt) ~ 0. However, it is not necessarily true that u'u(x @, + 1)¢p(x) " dp(xs) =~ 0
even when x and x; are quite dissimilar, which violates Property 2.3. For example, when Tanh
is used as the activation function, for z; = 0,22 > 0, we have Tanh(x;) Tanh(z2) = 0 while
Tanh’(x1) Tanh’(z2) > 0. To conclude, our analysis indicates that sparse representations alone are

not enough to reduce forgetting in nonlinear approximations.

4.2 Obtaining Sparsity with Elephant Activation Functions

Although Lemma 4.1 shows that the forgetting issue can not be fully addressed with sparse repre-
sentations solely in deep learning methods, it also points out a possible solution: sparse gradients.

With sparse gradients, we could have ¢h(x) " ¢j(x:) ~ 0. Together with sparse representations, we

57

Table 4.1: The function sparsity and gradient sparsity of various activation functions. Among
them, only Elephant is sparse in terms of both function values and gradient values, according to
Definition 4.1 and Lemma 4.2.

Activation Function Sparsity Gradient Sparsity

ReLU 1/2 1/2
Sigmoid 1/2 1
Tanh 0 1
ELU 0 1/2
Elephant 1 1

may still satisfy Property 2.3 in nonlinear approximations and thus reduce more forgetting. Specif-
ically, we aim to design new activation functions to obtain both sparse representations and sparse

gradients.

To begin with, we first define the sparsity of a function, which also applies to activation functions.

Definition 4.1 (Sparse Function). For a function o : R — R, we define the sparsity of function o

on input domain [—C,C] as

5. (o) = {allo(@)| < ez e [-C.CI} _ Hzllo(z)| < ez e [-C.Cl
¢ {z |z € [-C,C}| 20 ’

where € is a small positive number and C > 0. As a special case, when € — 07 and C' — oo, define

S(o) = lim lim Scc(o).

e—0t C—o0

We call o a S(o)-sparse function. In particular, o is called a sparse function when S(o) = 1.

Easy to verify that 0 < S(o) < 1. The sparsity of a function shows the fraction of nearly zero
outputs given a symmetric input domain. For example, neither ReLU(x) nor ReLU’(z) is a sparse
functions. Tanh(z) is not a sparse function while Tanh’(z) is a sparse function. In Figure 4.1 and
Table 4.1, we present more examples as well as visualizations of the activation functions and their

gradients.

o8

— RelU

— Gradient of ReLU

1.25

= Sigmoid

1.004 — Gradient of Sigmoid

0.754

> 0.504

0.25

0.00 1

-0.25 T

-6 -4

Figure 4.1: Visualizations of common activation functions and their gradients.

(c) Sigmoid

[}

99

8
- ELU
—— Gradient of ELU
6-
4
>
2-
0-_J/
-2 T T T T
-6 -4 -2 0 4
X
(b) ELU
1.5
= Tanh
1.0 — Gradient of Tanh
0.5+
> 0.0
—0.51
-1.0
-1.5 T T T T
-6 -4 -2 0 4
X
(d) Tanh

4
. T)
x —- d=8
2 5] A — d=20
g g o AN N7
o
B S P 0 2 4 6 A S 0 2 4 6
X X
(a) A drawing of an elephant. (b) Elephant(x) (c) Elephant’(x)

Figure 4.2: (a) “My drawing was not a picture of a hat. It was a picture of a boa constrictor
digesting an elephant.” The Little Prince, by Antoine de Saint Exupéry. (b) Elephant functions for
a =2, h=1, and various d. (c¢) Gradients of elephant functions for a = 2, h = 1, and various d.

It is worth noting that sparse activation functions and sparse representations are not the same—
sparse activation functions are one-to-one mappings while sparse representations are vectors in which
most elements are zeros. By incorporating sparse activation functions in neural networks, we increase

the likelihood of generating sparse representations given diverse inputs.

Next, we propose a novel class of bell-shaped activation functions, elephant activation functions.*

Formally, an elephant function is defined as

h

Elephant(z) = ——,
L+ 3

(4.3)

where a controls the width of the function, h is the height, and d controls the slope. We call a neural
network that uses elephant activation functions an elephant neural network (ENN). For example,

for MLPs, we have elephant MLPs (EMLPs) correspondingly.

As shown in Figure 4.2, elephant activation functions have both sparse function values and
sparse gradient values, which can be formally proved as well. Note that the radial basis functions
have a similar shape to elephant functions. However, elephant functions are sparser than radial
basis functions, as the gradient of an elephant function near 0 is flatter than that of a radial basis

function.

We name this bell-shaped activation function the elephant function, as it suggests that this activation empowers
neural networks with continual learning ability, echoing the saying “an elephant never forgets.” The bell shape also
resembles the silhouette of an elephant (see Figure 4.2), paying homage to The Little Prince by Antoine de Saint
Exupéry.

60

Lemma 4.2. Elephant(x) and Elephant’(z) are sparse functions.

Proof. Without loss of generality, we set h = 1. So Elephant(z) = ﬁ and |Elephant/(z)| =
d|z|d-1 1
a ‘%‘ (1+|§

a

)2. For 0 < € < 1, easy to verify that

|d
1 d

lz| > a(= — 1)/ = Elephant(z) < e and |z > 5 = |Elephant’(x)‘ <e.
€ €

C’—a(%—l)l/d

For C' > a(1 — 1)Y/4, we have S, c(Elephant) > ——¢&———, thus
S(Elephant) = lim lim S.c(Elephant) > lim i Coale =DV _
ephant) = li, i S.c(Plephan) 2l i~ = lig 1=
_d
Similarly, for C' > &, we have S, ¢ (Elephant’) > 0026 , thus
c- 4
N 7 . / . . 2¢ . o
S(Elephant’) = e1_1>1r(§1+ Cll_r)rgo Se,c(Elephant’) > 61_1>r51+ C}l_r)réo o= e1_1>1r(§1+ 1=

Note that S(Elephant) < 1 and S(Elephant’) < 1. Together, we conclude that S(Elephant) = 1

and S(Elephant’) = 1; Elephant(z) and Elephant/(z) are sparse functions. O

Specifically, d controls the sparsity of gradients for elephant functions. The larger the value of
d, the sharper the slope and the sparser the gradient. On the other hand, a controls the sparsity
of the function itself. Since both the gradient of an elephant function and the elephant function
itself are sparse functions, we increase the likelihood of both sparse representations and gradients
(see Equation (4.2)). Formally, we show that Property 2.3 holds under certain conditions for ele-

phant functions.

Theorem 4.1. Define fy(x) as in Lemma 4.1. Let o be the elephant activation function with h =1
and d — oco. When |V (x — x:)| > 2al,,, we have (Vi fu (), Vi fw(x:)) = 0, where = denotes an

element-wise inequality symbol and 1,, = [1,--- ,1]T € R™.

61

Proof. When d — oo, the elephant function is a rectangular function, i.e.,

1, J|z| <a,
o(x) = rect(x) = Lzl =,
0, |z|>a.

In this case, it is easy to verify that Vz,y € R, |z — y| > 2a, we have o(z)o(y) = 0 and o'(z)o’(y) =
0. Denote Ay = x — x;. Then when [VA,| = 2al,,, we have o(Vz + b)'o(Vax, + b) = 0 and
o' (Ve + b)"o/(V; + b) = 0. In other words, when = and z; are dissimilar in the sense that

|V(x —x)| > 2al,,, we have (Vo fuw (), Vi fw (1)) = 0. O

Theorem 4.1 mainly proves that when d — oo, Property 2.3 holds with elephant functions.
However, even when d is a small integer (e.g., 8), we can still obtain this property, as we will show

in the experiment section.

4.3 Related Work

4.3.1 Architecture-Based Continual Learning

Mirzadeh et al. (2022a;b) are particularly notable for studying the effect of network architectures on
continual learning. Several approaches involve the selection and allocation of a subset of weights in
a network for each task (Ammar et al. 2014, Mallya and Lazebnik 2018, Sokar et al. 2021, Fernando
et al. 2017, Serra et al. 2018, Masana et al. 2021, Li et al. 2019, Yoon et al. 2018, Mendez et al.
2020), or the allocation of a specific network to each task (Rusu et al. 2016, Aljundi et al. 2017).
Some methods expand networks dynamically (Yoon et al. 2018, Hung et al. 2019, Ostapenko et al.
2019) as training continues. Inspired by biological neural circuits, Shen et al. (2021), Bricken et al.
(2023), and Madireddy et al. (2023) propose novel networks which generate sparse representations
by design. Finally, our method is closely related to sparse activation functions, such as fuzzy tiling

activation (FTA) (Pan et al. 2022a), Maxout (Goodfellow et al. 2013), and local winner-take-all

62

(LWTA) (Srivastava et al. 2013). Specifically, inspired by tile coding (Sutton and Barto 2018), FTA
maps a scalar to a vector with a controllable sparsity level. Maxout outputs the maximum value
across k input features. LWTA is similar to Maxout with a slight difference: while Maxout only
selects and outputs maximum values, LWTA selects maximum values, sets others to zeros, and then
outputs them together. Compared to these activation functions, Elephant is simpler to implement
and can generate both sparse representations and gradients, as supported by our theoretical and

experimental results.

4.3.2 Sparsity in Deep Learning

Sparse representations are known to help reduce forgetting for decades (French 1992). In supervised
learning, dynamic sparse training (Dettmers and Zettlemoyer 2019, Liu et al. 2020, Sokar et al.
2021), dropout variants (Srivastava et al. 2013, Goodfellow et al. 2013, Mirzadeh et al. 2020, Abbasi
et al. 2022, Sarfraz et al. 2023), and pruning methods (Guo et al. 2016, Frankle and Carbin 2019,
Blalock et al. 2020, Zhou et al. 2020, Wang et al. 2022) are shown to speed up training and improve
generalization. Additionally, Lee et al. (2021), Sokar et al. (2022), and Tan et al. (2023) propose
dynamic sparse training approaches for RL which achieve comparable or improved performance,
higher sample efficiency, and better computation efficiency. Furthermore, Le et al. (2017) and Liu
et al. (2019b) show that sparse representations stabilize training and improve performance in RL.
Finally, Ceron et al. (2024) demonstrates that increasing network sparsity by gradual magnitude
pruning improves the learning performance of value-based RL agents. Our approach differs from
them in its simplicity and effectiveness—by simply replacing classical activation functions with

Elephant, we can enhance the efficiency of training RL agents.

4.3.3 Local Elasticity and Memorization

He and Su (2020) propose the concept of local elasticity. Chen et al. (2020) introduce label-aware
neural tangent kernels, showing that models trained with these kernels are more locally elastic.

Mehta et al. (2021) prove a theoretical connection between the scale of network initialization and

63

local elasticity, demonstrating extreme memorization using large initialization scales. Incorporating
Fourier features in the input of a network also induces local elasticity, which is greatly affected by

the initial variance of the Fourier basis (Li and Pathak 2021).

4.4 Experiments

In this section, we experimentally validate a series of hypotheses regarding the effectiveness of

elephant activation functions under regression and RL settings.

For elephant activation functions, we use the following setup unless explicitly stated otherwise.
Specifically, since the activation area of Elephant is narrow and centered around zero (i.e., from
—a to a), we apply layer normalization (Ba et al. 2016) to normalize the input vector in order to
get a better trade-off between stability and plasticity (Mermillod et al. 2013, Lin et al. 2022, Jung
et al. 2023, Lyle et al. 2023). We also make some parameters of Elephant adaptive and learnable,
assigning an individual elephant activation function to each unit of a neural network. Particularly,
all elephant functions are initialized with the same hyper-parameters at the beginning of training.
During training, we optimize h and a using gradient descent while keeping d fixed for each elephant
function (see Equation (4.3)). Compared to fixing h and a during training, this approach is shown to
match or even improve performance in our preliminary experiments. Furthermore, when Elephant
is applied, to improve the diversity of initially generated features, we initialize bias values in a
linear layer with evenly spaced numbers over the interval [—v/30pias, V30bias], Where opiqs is a
positive hyper-parameter. When other activation functions are used, bias values are initialized with
zeros following PyTorch’s default setting. For weight values in a linear layer, we follow the default
initialization as PyTorch by sampling weight values from a uniform distribution U [—\/E, \/E], where

k =1/in_features.

64

4.4.1 Streaming Learning for Regression

RL is relatively complex due to agent-environment interactions. Instead, we first perform experi-

ments in a simple regression task in the streaming learning setting to answer the following question:

Can we achieve mild forgetting and local elasticity with elephant activation functions?

In this setting, a learning agent is presented with one sample only at each time step and then
performs learning updates. Moreover, the learning happens in a single pass of the whole dataset; that
is, each sample only occurs once. Furthermore, the data stream is assumed to be non-independent
and identically distributed (non-I1ID). Finally, the evaluation happens after each new sample arrives,
which requires the agent to learn quickly while avoiding forgetting. Streaming learning methods
enable real-time adaptation; thus, they are more suitable in real-world scenarios where data is

received in a continuous flow.

We consider approximating a sine function in the streaming learning setting. In this task,
there is a stream of data (z1,91), (z2,92), -, (Tn,yn), where 0 < 1 < 23 < -+ < z, < 2,
y; = sin(wz;), and n = 200. The learning agent f is an MLP with one hidden layer of size
1,000. At each time step ¢, the agent only receives one sample (x4,y;). We minimize the loss
It = (f(xt) —y¢)?, where f(z;) is the agent’s prediction. For each new arriving example, we perform
10 updates with Adam (Kingma and Ba 2015) optimizer. The best learning rate is selected from
{3e — 3,1e — 3,3e — 4,1e — 4,3e — 5,1e — 5}. For Elephant, we set d = 8, h = 1, a = 0.08, and
Obias = 1.28. For clarity of demonstration, we omit layer normalization before applying Elephant
and fix h and a during training, avoiding their influence on the visualization of the NTK functions.
For SR-NN, we apply various classical activation functions (ReLU, Sigmoid, ELU, and Tanh),
tune Set KL loss weight A and 5 (see Liu et al. (2019b) for details), and present the best result.
Specifically, we choose A from {0,0.1,0.01,0.001} and choose 8 from {0.05,0.1,0.2}. We measure
the agent performance by the mean square error (MSE) on a test dataset with 1,000 samples, where

the inputs are evenly spaced over the interval [0, 2].

We compare our method Elephant with two kinds of baselines. One is classical activation

65

Table 4.2: The test MSEs of various methods in streaming learning for a simple regression task.
Lower is better. Elephant achieves the best test performance.

Method Test Performance (MSE)

ReLU 0.4729 £ 0.0110
Sigmoid 0.4583 £ 0.0008
Tanh 0.4461 £ 0.0013
ELU 0.4521 £ 0.0019
SR-NN 0.4061 £ 0.0036

Elephant 0.0081 + 0.0009

functions, including ReLLU, Sigmoid, ELU, and Tanh. The other is the sparse representation neural
network (SR-NN) (Liu et al. 2019b), which generates sparse representations by regularization. We
present the test MSEs of various methods in Table 4.2. Lower is better. All results are averaged
over 5 runs, reported with standard errors. For SR-NN, we present the best result among the

combinations of SR-NNs and classical activation functions.

Clearly, Elephant has the best performance, achieving a test MSE that is two orders of magnitude
lower compared to baselines, which have similar orders to each other. Moreover, SR-NN performs
slightly better than classical activation functions, showing the benefits of sparse representations.
Yet, compared with Elephant, the test MSE of SR-NN is still large, indicating that it fails to
approximate well. To analyze in depth, we plot the true function sin(mz), the learned function
f(z), and the NTK function NTK(z) = (Vufw(®), Vwfw(zt)) at different training stages for
Elephant and SR-NN in Figure 4.3. The plots of classical activation functions are not presented
since they are similar to the plots of SR-NN. We normalize NTK(«) such that the function value is
n [—1,1]. The plots in the first row show that for Elephant with d = 8, NTK(x) quickly decreases
to 0 as x moves away from x;, demonstrating the local elasticity of applying Elephant with a small d.
However, SR-NNs (and MLPs with classical activation functions) are not locally elastic; the learned
function basically evolves as a linear function (Figure 4.3), a phenomenon that often appears in

over-parameterized neural networks (Jacot et al. 2018, Chizat et al. 2019).

By injecting local elasticity to a neural network, we can break the inherent global generalization

ability (Ghiassian et al. 2020) of the neural networks, constraining the output changes of the neural

66

| 74/_;/ <) /\
> 01 > 04

—— True func —— True func
PN B Learned func P B Learned func

—— Normalized NTK —— Normalized NTK
Xt Xt
-2 T : T T -2 T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
X X
Elephant at = 100 Elephant at = 200
2 2

11 14
> 01 > 0+
—— True func True func

N B Learned func o Learned func
—— Normalized NTK —— Normalized NTK

Xt Xt

00 05 1.0 15 2.0 00 05 10 15 2.0
X X
SR-NN at r = 100 SR-NN at r =200

Figure 4.3: Plots of the true function sin(mz), the learned function f(z), and the NTK function
NTK(z) at different training stages using Elephant and SR-NN for approximating a sine function.
The NTK(z) of Elephant quickly reduces to 0 as z moves away from z;, demonstrating local
elasticity.

network to small local areas. Utilizing this phenomenon, we can update a wrong prediction by
“editing” outputs of a neural network nearly point-wisely. To verify, we first train a neural network
to approximate sin(mz) well enough, calling it the old learned function. Now assume that the
original y value of an input z is changed to 3’, while the true values of other inputs remain the
same. Our goal is to update the prediction for input x to %', while keeping the predictions of other
inputs without expensive re-training on the whole dataset. Note that this requirement is common
in RL (see next section). Specifically, we choose x = 1.5, y = —1.0, and vy’ = —1.5; and perform
experiments with Elephant and ReLU, showing in Figure 4.4. Both methods successfully update
the prediction at x = 1.5 to 3’. However, besides the prediction at x = 1.5, the learned function
with ReLLU is changed globally while the changes with Elephant are mainly confined in a small local

area around z = 1.5. That is, we can successfully correct the wrong prediction nearly point-wise

67

—— Old learned func —— Old learned func

—— New learned func —— New learned func
Old prediction Old prediction

A New prediction A New prediction

> 01 > 01
_1 4 _1 4
_2 T T T T T _2 T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
X X
(a) ReLU (b) Elephant

Figure 4.4: Plots of updating a wrong prediction with ReLU and Elephant. Elephant allows up-
dating the old prediction nearly point-wisely by “editing” the output value of the neural network, a
capability lacking in classical activation functions (e.g., ReLU).

by “editing” the output value for elephant neural networks (ENNs), but not for classical neural

networks.

To conclude, we showed that (1) sparse representations do not suffice to address the forgetting
issue, (2) ENNs are locally elastic even when d is small, and (3) ENNs can continually learn to solve

regression tasks by reducing forgetting.

4.4.2 Reinforcement Learning

In Figure 3.2, we show that the forgetting issue exists even in single RL tasks and a large replay
buffer largely masks it. Without a replay buffer, a single RL task can be viewed as a series of tasks
without clear boundaries (Dabney et al. 2021). For example, in temporal difference (TD) learning,
the true value function is approximated by V' with bootstrapping: V' (s;) <= r4+1+7vV (st41), where s;
and sy11 are two successive states and 7141 +7yV (s¢+1) is named the TD target. During training, the
TD target constantly changes due to bootstrapping, non-stationary state distribution, and changing
policy. To speed up learning while reducing forgetting, it is crucial to update V'(S;) to the new TD

target without changing other state values too much, where local elasticity can help.

In the following, we aim to demonstrate that incorporating elephant activation functions helps

68

MountainCar-v0 Pixelcopter-PLE-vO Acrobot-v1 Catcher-PLE-vO

—250 & 50 -100

v

—500

Return
Return

-750
¢ 20

-1000-;

102100 10¢ T TR TR T Y T Y S Y Y T SR
Buffer Size Buffer Size Buffer Size Buffer Size
—&— RelU —&— Maxout LWTA —@— FTA —@— Elephant

Figure 4.5: The performance of DQN in 4 Gymnasium and PyGame tasks with different activation
functions under various buffer sizes, measured as the average return of the last 10% episodes.
Elephant demonstrates its robustness to varying buffer sizes.

reduce forgetting in RL, thus improving sample efficiency and learning performance. We mainly
consider two representative value-based RL algorithms — deep Q-network (DQN) (Mnih et al.
2013; 2015) and Rainbow (Hessel et al. 2018). We consider other activation functions as baselines,
including ReLLU, Tanh, Maxout (Goodfellow et al. 2013), LWTA (Srivastava et al. 2013), and
FTA (Pan et al. 2022a). While ReLU and Tanh are widely used classical activation functions,
Maxout, LWTA, and FTA are designed to generate sparse representations (see Related Work for

detailed introductions).

Elephant Improves Memory Efficiency
First, we focus on addressing the following question:

Can elephant activation functions help achieve strong performance with a small memory

budget?

Specifically, we implement DQN with JAX (Bradbury et al. 2018) from scratch based on Lan
(2019) and test DQN in 4 classical RL tasks (i.e., MountainCar-v0, Acrobot-vl, Catcher, and
Pixelcopter) from Gymnasium (Towers et al. 2023) and PyGame Learning Environment (Tasfi
2016) under various buffer sizes. Note that we select these small-scale RL tasks so that we could
perform thorough hyperparameter tuning and ensure a fair comparison within a reasonable time
frame. For instance, we consider buffer sizes in {32, 12, 3e2, 1e3, 3e3, le4}, where the default buffer

size is led. And for each hyper-parameter setup, a best learning rate is selected from {le — 2,3e —

69

3,1e—3,3e—4,1le—4,3¢ —5,1le—5,3e — 6}, while RMSProp (Tieleman and Hinton 2012) is applied
with a decay rate of 0.999 for optimization. The discount factor v = 0.99. The mini-batch size is
32. The default network is an MLP with one hidden layer of size 1,000 in all tasks. However, when
different activation functions are applied, we adjust the width of the hidden layer so that the total
number of parameters is close to each other. For Maxout and LWTA, we set k = 5. For FTA, we set
k =20 and [l,u] = [—20, 20] following Pan et al. (2022a). For Elephant, to make a fair comparison,
we use the same set of hyper-parameters for all DQN experiments in classical RL tasks, i.e., d = 4,
h =1, a=0.2, and gp;qs = 0.4. Note that tuning the hyper-parameters of Elephant for each task

and buffer size could further improve the performance.

We plot agents’ performance of different activation functions and buffer sizes in Figure 4.5.
All results are averaged over 10 runs, and the shaded areas represent standard errors. Clearly,
Elephant demonstrates its robustness to varying buffer sizes. When the buffer size is reduced,
the performance of Elephant remains high in all four tasks, while the performance of all other
activations drops significantly. In summary, these results confirm the effectiveness of Elephant in

reducing forgetting and improving memory efficiency for DQN.

Elephant Improves Sample Efficiency
Next, we investigate the following question:

Given a similar amount of training samples and sufficient memory resources, can ele-

phant activation functions outperform classical activation functions?

To answer this question, we test DQN and Rainbow in 10 Atari tasks (Bellemare et al. 2013) with
different activation functions. Specifically, we selected 10 representative Atari tasks recommended
by Aitchison et al. (2023)—Amidar, Battlezone, Bowling, Double Dunk, Frostbite, Kung-Fu Master,
Name This Game, Phoenix, Q*bert, and River Raid——which produce scores that closely correlate
with the performance on the full set of 57 Atari tasks, while requiring substantially less training

cost. The implementation of DQN and Rainbow are adapted from Tianshou (Weng et al. 2022). 2

*https://github.com/thu-ml/tianshou/blob/v0.4.10/examples/atari/

70

https://github.com/thu-ml/tianshou/blob/v0.4.10/examples/atari/

120% q

— RelU
—— Tanh
—— Maxout
LWTA
%+ —— FTA
— Elephant

— RelLU
—— Tanh h A
T — Maxout N
LWTA
g% —— FTA
—— Elephant

100% 4

m
8

Human-normalized score
Human-normalized score

T T T T J T T T T
10 20 30 40 50 10 20 30 40
Frame (millions) Frame (millions)

(a) DQN (b) Rainbow

Figure 4.6: The learning curves of DQN and Rainbow aggregated over 10 Atari tasks for 6 activa-
tion functions. Solid lines correspond to the average performance over 5 runs, while shaded areas
correspond to standard errors. Elephant surpasses the baselines significantly.

We also follow the default hyper-parameters and training setups as in Tianshou unless explicitly
stated otherwise. The mini-batch size is 32. The discount factor is 0.99. Adam (Kingma and Ba
2015) is applied to optimize. We train all agents for 50M frames (i.e., 12.5M steps). For DQN;, the

learning rate is le — 4 while it is 6.25e — 5 for Rainbow. The buffer size is 1 million.

For Maxout and LWTA, we set k = 4. For FTA, we set & = 20 and [l,u] = [-20,20] fol-
lowing Pan et al. (2022a). We adjust the width of the hidden layer so that the total number of
parameters is close to each other when various activation functions are applied. To make a fair com-
parison, we use the same hyper-parameters for Elephant (i.e., d =4, h =1, a = 0.1, and 0pj45 = 2)
in all Atari experiments, although tuning them for each task could further boost the performance.
Furthermore, since Rainbow uses noisy linear layers (Fortunato et al. 2018), we follow the default
initialization in Rainbow and do not reinitialize the weights and biases when Elephant is applied in
Rainbow. Note that for both DQN and Rainbow, we only apply these activation functions to the

penultimate layer; the CNN feature network still uses ReLU as the default activation function.

In Figure 4.6, we show the test human-normalized scores of DQN and Rainbow with different
activation functions, aggregated over 10 Atari tasks. In particular, the raw score of each task is first
normalized so that 0% corresponds to a random agent and 100% to a human expert. Then those

human-normalized scores are smoothed with a moving average over 20 subsequent points within

71

the same run. Smoothed curves are then grouped by frame and seed, and for each frame we take
the median across tasks, thereby collapsing task-level variability into a single performance score for
each pair of frame and seed. Finally, in Figure 4.6, we plot the means (solid lines) across seeds for
frame, with shaded regions denoting the standard errors (shaded areas) of the medians. Moreover,
we present the detailed test performance of DQN and Rainbow in all 10 Atari tasks in Table 4.3
and the return curves in Figure 4.7. Together, these results demonstrate that even when a large
buffer is used, Elephant still surpasses the baselines significantly.

Table 4.3: The performance comparison of DQN and Rainbow with different activation functions
across 10 Atari tasks. We report the final test returns averaged over 5 runs as well as the corre-
sponding 95% confidence intervals.

(a) DQN
ReLU Tanh Maxout LWTA FTA Elephant
Task
Amidar 309 £ 30 171+ 9 620 £ 133 462 £ 40 203 £ 2 912 £ 88
Battlezone 21664 + 3696 4148 £+ 3084 19028 £ 6012 21852 £ 1924 4760 £+ 1504 26176 + 2192
Bowling 44 + 8 2+2 22 £6 337 20+ 7 44 + 11
Double Dunk -1.9 £ 0.5 -1.4 +£0.2 -5.2 24 -6.0 £ 1.3 -2.2 + 0.5 -5.0 14
Frostbite 3074 £+ 167 1501 + 628 3734 £+ 505 3510 £ 208 2613 £ 433 6001 + 724
Kung-Fu Master 12996 + 9809 0+0 22563 4+ 2230 10731 4+ 7698 12251 4+ 3113 28411 + 2065
Name This Game 3573 £+ 484 3889 4 488 5261 £+ 761 5890 £ 551 4751 4+ 383 4847 4+ 435
Phoenix 4346 £ 246 3060 £ 632 8421 £ 829 7659 £ 1544 14055 4+ 1792 11110 £ 2387
Q*bert 11081 £ 1271 7697 4+ 1824 14469 + 898 15228 £ 638 10195 £+ 1007 15454 + 84
River Raid 9560 £+ 290 4802 £+ 319 9405 £+ 243 9669 + 288 6875 + 110 14339 £ 1148
(b) Rainbow

W ReLU Tanh Maxout LWTA FTA Elephant
Task
Amidar 300 + 37 285 4+ 27 354 + 64 309 £+ 96 211 £ 12 402 £ 71
Battlezone 24104 £ 2224 9844 4+ 8764 22320 £+ 1712 24308 4+ 3284 16176 4+ 1520 19600 + 4088
Bowling 27+ 3 8+5 31+ 1 30 +1 26 + 4 24+ 7
Double Dunk -1.9 £ 0.6 -1.9+£04 -2.0=£0.3 -1.9 £ 0.6 -2.0=£0.3 -2.0£0.3
Frostbite 2825 £ 308 2604 + 662 3747 £ 399 2706 £ 913 292 + 17 3961 + 362
Kung-Fu Master 24583 £ 1642 17225 4+ 1413 21275 + 1324 23064 £ 2794 18502 £ 1282 25421 + 2004
Name This Game 12321 + 713 10833 £ 1155 12746 £ 199 13425 4+ 734 9616 + 536 11384 4+ 444
Phoenix 6442 £+ 474 10649 £ 1170 15024 £ 1894 14408 £ 951 8207 £ 3642 26033 * 5962
Q*bert 14477 £ 467 14616 £ 514 15537 +£ 377 15110 + 880 11309 £ 4481 16160 £ 794
River Raid 10054 + 564 8109 £ 455 11127 £ 540 10504 £ 309 7427 £ 979 9563 + 487

72

—— RelU —— Tanh —— Maxout —— LWTA —— FTA —— Elephant
Amidar Battlezone Amidar Battlezone
1000 r 500 30000
800 o 400 24000
600 o 300 4 - 18000
400 o 200 - 12000
200 o 100 o 6000
0 T T T T 0 T T T 0
Bowling Bowling Double Dunk
50 1 40 - 0
32 - -3 -
24 = -6 -
164 o -9 -
8 - -12 -
0 T T T T o T T T 15 T T T T
Frostbite Kung-Fu Master Frostbite
8000 r 30000 5000 r
6000 4 | 24000 1 = 4000 -
18000 - T~ 4 - 3000 o
4000 L e
12000 + o 2000 o
2000 o r eo0o- fF L 1000 - L
0 T T T T 0 T T T T 0 T T T
Name This Game Phoenix Name This Game Phoenix
8000 15000 15000 r 30000 r
6000 12000 + 12000 + - 24000 -
9000 9000 - 18000 o
4000 - -
6000 - 6000 - 12000 o
2000 3000 - L 3000 - L 6000 L
0 0 T T T T 0T T T T 0 -
River Raid Q*bert River Raid
20000 15000 20000 12500 r
16000 12000 + 16000 10000 o
12000 + 9000 12000 + 7500 o
8000 6000 8000 5000 o
4000 H 3000 4000 2500 H o
0 T T T T T 0 T T T T 0 T T T T T 0 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Frame (millions) Frame (millions) Frame (millions) Frame (millions)
(a) DQN (b) Rainbow

Figure 4.7: The return curves of DQN and Rainbow with various activations in 10 Atari tasks over
50 million training frames during test. Solid lines correspond to the average performance over 5
random seeds, and the shaded areas correspond to standard errors.

73

Gradient Analysis

In Section 4.2, we claimed that Elephant induces sparse gradient and thus reduces forgetting.
Here, we perform a gradient analysis to verify the claim. To be specific, we visualize the gradient
covariance matrices at different stages of training DQN in Atari tasks. Essentially, the gradient
covariance matrix is a matrix of normalized NTK. Formally, we estimate this matrix (denoted as

(') by randomly sampling k training samples X1, --- , X and compute each element as

C’. J— <v91(97 Xi); VQZ(97 X])>
7] ||v9l(6’XZ)HHVQZ(G’XJ)”7

where [is the loss function and @ is the weight vector. The gradient covariance matrix is strongly
related to generalization and interference (Fort et al. 2020, Lyle et al. 2023) — negative off-diagonal
entries usually indicate interference between different training samples, while positive off-diagonal

entries reflect generalization.

Considering Property 2.3 and Theorem 4.1, when Elephant is applied, we expect the off-diagonal
entries of the gradient covariance matrix to be close to zero. From Figure 4.9 to Figure 4.18, we
present the heatmaps for training DQN in all 10 Atari tasks with 6 activation functions. Specifically,
we set k = 32 and estimate the gradient covariance matrices at the midpoint (Frame = 24.8M) and
end (Frame = 48.8M) of training. Indeed, as shown in these figures, the gradient covariance matrices
exhibits near-zero off-diagonal values throughout the entire training process when Elephant is used,
indicating mild generalization and reduced interference. However, for other activation functions
such as ReLU, some off-diagonal values remain noticeably non-zero, indicating overgeneralization

and strong interference.

Sensitivity Analysis

Finally, we conduct a sensitivity analysis for the hyper-parameters of Elephant. Specifically, we vary
o and d (see Equation (4.3)) in Elephant and test DQN in Battlezone and Q*bert. For reference,

we also show the performance of ReLU. As shown in Figure 4.8, for Battlezone, a small a (around

74

—— RelU — Elephant

Battlezone Q*bert Battlezone Q*bert

28000
16000
25000 18000 _—
26000 15000
16000
20000 £ 14000
]

24000 2
11
3 13000

Return
Return

15000
12000

22000

11000

10000

T T T T T v T 20000 T
0020 050 1.00 2.00 01 05 10 12 14 16 18 20 1 2
Value Value Value

6 1 2 a 6
Value

(a) Hyper-parameter a (b) Hyper-parameter d

Figure 4.8: A sensitivity analysis of hyper-parameters ¢ and d in Elephant. We present the final
test returns averaged over 5 runs, and the shaded areas represent standard errors. The best a varies
in different tasks while a small d works well across tasks in general.

0.1) yields the best performance, whereas for Q*bert, a relatively large a (around 1.2) performs

best. As for d, the performance is more robust to d and a small d works well across tasks in general.

4.5 Conclusion

In this chapter, we proposed elephant activation functions that can make neural networks more
resilient to catastrophic forgetting. Theoretically, our work provided a deeper understanding of
the role of activation functions in catastrophic forgetting. Empirically, we showed that incorpo-
rating elephant activation functions in neural networks improves memory efficiency and learning

performance of value-based algorithms.

75

W o w9 w o om g w o w9 W o ow g
o wow o 82128 o w o w o &3R8 w2 w3 e monmo & 88823 o moweo 8288 w g w3
82]88 2 g 2288 j 2 o weowme 8BRS 8 L] &8 j 2 2234838 2 I
2538338 TT T 253535 T T T S5 2888 ¢ 595 4 2525387 TT 2538358 TT T SEB888<s 959 7
TT T T | 5 S 1 T T | TT S o 1 !
. i —
L oc X
-8z Il 0€
-9z . N
- -9z o
" -z . n - v
Z am = —o0z z = 3 3 = =" e
© "mm -8t @ @ @ © @ ¢
< L] < © < < © -8T
i -ot i 3 i i g [
o b1 I} L @ & 1w 9T
£ -z g £ H £ £ it
£ . -ot & g & & g Lot
o o -0t

- 5

. ol 4
-z
P o

(b) Tanh
(d) LWTA
(b) Tanh
(d) LWTA

(f) Elephant
trices for training DQN in Amidar.

"] Bom-oe .

- L oc m -0t

ST o -

] . -9z -9z

N " = o w7 -z B I W

s N = -z = = -z

@ L)] 0e @ B -0z @ @ B = -0z

3 T me 3 5 -81 3 3 s -81

3 LI | o1 3 I -9t Iy Iy W = -9t

E s £ 2 o -vT £ £ o o -1
5 -zt g £ - C £ £ £ .

& " = -ot & g a £ £ g - ol

= -ot & - -0t

—8 " -8

9 -9

- -

-z -

-0

0=
lance ma

W2 ow s PR
o wowe 8388 s weownsg 8828 ng e g Qe m e
8 R RBK883S 33 3 g KR RA&88CS I s 2 g wgygdarE s s g2 gegdidars
35283999 S5233899 97 = ERE - S
3 P99 SS5S5S999 7
——— e e E T s < —
L = o > .
STE & SPRRARe Sl S oo o I . SRR
Jem . =Cd 5 o ISl o
L v " e
S = H = - 34 = H 3 s -" L L2
2 k] - C M &z H - “oz = E E z . il o
2 . et 2 3 " -8t 9) 2 2 H = . e
]) [) -9t T 3 “ot o i i - n -91
o . b1 o - I} @ v m L]
E = = o) S £ 2 vl £ £] r = -1
g . -zt g 5 -2 g g £ =-z
 fpmmmm_g"tn . WOt & £ ot = = £ | " ot
o -

A e
oS T o

(a) ReLU
(c) Maxout
(e) FTA
(a) ReLU
(¢) Maxout

Heatmaps of grad

-9z

-vz
& & H o g 3 z
3 S < -81 S 3 <
Il |} N -91) Il o~
& o) b $ i
13 £ 2 vl £ £ w
5 5 E X & 5 £
£ & I zt £ £ s
& -0t .. &

Figure 4.9

(f) Elephant
trices for training DQN in Battlezone.

iance ma
76

t covar

en

(e) FTA

Heatmaps of grad

Figure 4.10

W o w9 w o om g w o w9 W o ow g
o wowmeo &8 83 e momwme &2 88 w o w3 e monmo & 88823 o moweo 8288 w g w3
g1 gygs 2 g8 g8s : 2 o weowme 8BRS gL g8s g b= g2 8 4S8 3 s momwmeo &8RS
2538338 TT T 253535 T T T S5 2888 ¢ 595 4 2525387 TT 2538358 TT T SEB888<s 959 7

T T | > S T | T c S | !
. - = i S] i o
-0t - 0c] - -0e L oc
-8z] i -- -8z = . -8z %
- -9z & a -0z . -9z B
-vz -- -z -vz o N
. . vz
-2z) - -7z n -2z ' N

z L T4 zmik . gl W4 = eSS z 3 -0z z -~ o

< -8t @ < -8t

< © - < [] © -8T

Il UL -9t 3 - N Il L Il -9t 5 -91

-v1] 2 " -pT I3 (31
Erefn “or g a

Frame:
Frame:
Frame:

-
e
Frame

=3
Co 0

S
1
.
(b) Tanh
(d) LWTA
(f) Elephant
for training DQN in Bowling.
(b) Tanh
™,
(d) LWTA

24.8M

=24.8M
"
Bl
=
g
s
o,
o=
S S,
=24.8M
1ces
24.8M
"
"
8
o
"
ety
24.8M
2
:
"
:
24.8M

"
.

Frame:

tr
Frame:
= L]
1
"
o L
Frame:
.l
.
.
Frame:
'-._.-.- H
L] ..l.

Frame:
S
i
-
L]
.
Wi i
e "
B0y
KRR
Frame:

u R [5] =
ol 5 I | i
s " e ' » Ul ¢ -z
S S SO i SO P e O o o Sl By § -0 o
ONTOPONTORONT©®O CNTOPONTORONT©®O ONTORONTODONT©®O A R S A A B
EREEEERER R SNZEERRARER SNZ2SSRRRLR Tliiadidaddtsas
a2 e s PR o2 e g

g wowe 8B ES . c o w o BB RS cnow e @328 45 n s

sogngSBEE sesgsgsgS2EE8 B EEERERE caggsg B 88
E E g g2 g8s g
DOn,vn,v ODD,n,u | DOn,v,O ~ 8 o o o I 1T 1 |1

covarliance ma

(e) FTA

= - .02 S z B - u 02 3 -oz £ Ealiuies =0z
s Cl n -81 @ = @ " -8t e o "ma -8t s g -81
i] = -ot i ¥ i -9t i -9t ¢ - ot
o s o I o -1 o -vT & L]
£ _a £ g £ ERtmiEe - £ -zt g (e 8 o o1
g o~ Co & g £ “ot 2y g ot L frowowga " o
o U [U] = -~ - o
- = -9 2 = m o g
- g o TS
-y — — > N . -
-z Q e =
- = 1- . = oa omg
o o o = ot o
<
—~
~ ©
~

(c) Maxout

= -7z
3 b r e B - 07 3 = 3 o -0z 3 -0z = . = -
< -81 < = < o -8t < " -81 2 LR
~ - L] -n ~ < ~ ~ L] L} < - L] 8T
i o O i 3 y -or) o 8 [2 -ot
£ -l £ o 2 . L] -vT £ L] - om VT] -1
I3 43 o© m © -~ -zt I3 43 m - . - -zt
= et 0T © g c o -ot = " -0t g . i R
-8 o -8 "
] A =9
-t -

Figure 4.11: Heatmaps of gradient
(a)
W
:':.'
o

in Double Dunk.

(f) Elephant
trices for training DQN

iance ma
7

(e) FTA
Heatmaps of gradient covari

Figure 4.12

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

-025

-0.00

--0.25

(b) Tanh

(a) ReLU

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00

0.75

0.50

-025

-0.00

--025

o w o
8 R R
~ 3 o

.

=48.8M

(d) LWTA

=24.8M

Frame:

=48.8M

(c) Maxout

=24.8M

Frame:

-0.25

-025

-0.00

--0.25
-0.50
-0.75
-1.00

(f) Elephant

(e) FTA

DQN with in Frostbite.

ining

trices for tra

lent covariance ma

Heatmaps of grad

Figure 4.13

=48.8M

Frame:

=
%
o
<

Frame:

=24.8M

Frame:

1.00

0.75

0.50

-025

(b) Tanh

(a) ReLU

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00

0.75

0.50
-025
-0.00
--0.25

(d) LWTA

(¢) Maxout

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00
0.75
0.50

-0.25

-0.00

-0.50
-0.75
-1.00

(f) Elephant

(e) FTA

in Kung-Fu Master.

trices for training DQN

lance ma

t covar

en

Heatmaps of gradi

Figure 4.14

78

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

-0.50

(b) Tanh

(a) ReLU

=24.8M

Frame:

1.00
0.75
.51
-0.25
-0.00

"ama"

ol

Frame=48.8M
[}

re

=24.8M

Frame:

1.00
0.75
0.50

-0.25

-0.00

--0.25

[:

=48.8M

Frame:

(d) LWTA

=24.8M

Frame:

=48.8M

(c) Maxout
24.8M Frame:

Frame:

-0.50

(f) Elephant

(e) FTA

in Name This Game.

trices for training DQN

covarlance ma

l1ent

Heatmaps of gradi

Figure 4.15

=
%
o
<

Frame:

=24.8M

Frame:

-0.75

(b) Tanh

(a) ReLU

=48.8M

Frame:

48.8M

Frame:

=24.8M

Frame:

2

i

S
7

) LWTA

d

(¢) Maxout

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00

0.75

0.50

-0.25

-0.00

--0.25

(f) Elephant

(e) FTA

for training DQN in Phoenix.

ices

i tr

covariance ma

ient

Heatmaps of gradi

Figure 4.16

79

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00
0.75
0.50

k:

-025

-0.00

--0.25

(b) Tanh

(a) ReLU

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00

0.75

0.50

-025

-0.00

S
T
'

o

-0.50
-0.75
- -1.00

LWTA

(d)

(¢) Maxout

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

o w o
8 R R
~ 3 o

S

-0.25

-0.00

--0.25

-0.50

-0.75
-1.00

(f) Elephant

(e) FTA

in Q*bert.

ith

trices for training DQN w

covarlance ma

l1ent

Heatmaps of gradi

Figure 4.17

£
e
&

=
@
<
&

Frame:

1.00

0.75

0.50

8
S
|

-0.00

--0.25

-0.75

(b) Tanh

(a) ReLU

=48.8M

Frame:

=
©
©
g

Frame:

=24.8M

Frame:

1.00

0.75

0.50

-025

-0.00

--0.25

-0.50

(d) LWTA

(¢) Maxout

=48.8M

Frame:

=24.8M

Frame:

=48.8M

Frame:

=24.8M

Frame:

1.00

0.75

0.50

-0.25

-0.00

--0.25

|

-0.50
-0.75
1.00

(f) Elephant

(e) FTA

ith in River Raid.

Figure 4.18: Heatmaps of gradient covariance matrices for training DQN w

80

Chapter 5

Learning to Optimize for Reinforcement

Learning

Deep learning has achieved great success in many areas (LeCun et al. 2015), which is largely at-
tributed to the automatically learned features that surpass handcrafted expert features. Gradient
descent enables automatic parameter adjustment within a neural network, resulting in highly ef-
fective features. Despite these advancements, as another important component in deep learning,
optimizers are still largely hand-designed and heavily reliant on expert knowledge. To reduce the
burden of hand-designing optimizers, researchers propose to learn to optimize with the help of
meta-learning (Sutton 1992a, Andrychowicz et al. 2016, Chen et al. 2017, Wichrowska et al. 2017,
Maheswaranathan et al. 2021). Specifically, a learned optimizer is typically parameterized as a
neural network which ingests optimization related information (e.g., gradients, losses, or parame-
ter histories) and outputs parameter updates, designed to replace classical hand-crafted optimizers
such as SGD, Adam, and RMSProp. Compared to designing optimizers with human expert knowl-
edge, learning an optimizer is a data-driven approach, reducing the reliance on expert knowledge.
During training, a learned optimizer can be optimized to speed learning and help achieve better
performance. Despite the significant progress in learning optimizers, previous works only present

learned optimizers designed for supervised learning (SL). Hoever, they have been shown to perform

81

poorly in reinforcement learning (RL) tasks (Metz et al. 2020b; 2022b). Learning to optimize for

RL remains an open and challenging problem.

One key difficulty is that RL tasks possess unique properties that are largely overlooked by
classical optimizers. For instance, the non-stationarity inherent in RL training complicates the
optimization of learned optimizers and significantly reduces learning efficiency. Specifically, unlike
SL, the input distribution of an RL agent is non-stationary and non-independent and identically
distributed (non-IID) due to locally correlated transition dynamics (Alt et al. 2019). Additionally,
due to policy and value iterations, the target function and the loss landscapes in RL are constantly
changing throughout the learning process, resulting in a much more unstable and complex opti-
mization process. In some cases, these properties also make it inappropriate to apply optimization
algorithms designed for SL to RL directly, such as stale accumulated gradients (Bengio et al. 2020a)

or unique interference-generalization phenomenon (Bengio et al. 2020Db).

In this chapter, we aim to learn optimizers for RL. Instead of manually designing optimizers
by studying RL optimization, we apply meta-learning to learn optimizers from data generated in
the agent-environment interactions. We first investigate the problem and find that the complicated
agent-gradient distribution impedes the training of learned optimizers for RL. Furthermore, the
non-IID nature of the agent-gradient distribution also hinders meta-training. Lastly, the highly
stochastic agent-environment interactions can lead to agent-gradients with high bias and variance,
exacerbating the difficulty of learning an optimizer for RL. In response to these challenges, we
propose a novel approach, Optim/RL, a learned optimizer for RL that involves pipeline training
and a specialized optimizer structure of good inductive bias. Compared with previous methods,
Optim4RL is more stable to train and more effective in optimizing RL tasks, without complex
optimizer structures or numerous human-designed input features. We demonstrate that Optim4RL
can learn to optimize RL tasks from scratch and generalize to unseen tasks. Our work is the first

to propose a learned optimizer for deep RL tasks that works well in practice.

82

5.1 Learning to Optimize with Meta-Learning

We aim to learn an optimizer with meta-gradient methods. Let 6 be the agent-parameters of an
RL agent that we aim to optimize. A (learned) optimizer is defined as an update function U that
maps input gradients to parameter updates, implemented as a meta-network, parameterized by the
meta-parameters ¢. Let z be the input of this meta-network which may include gradients g, losses
L, exponential moving average of gradients, etc. Let h be an optimizer state which stores historical

values. We can then compute agent-parameters updates Af and the updated agent-parameters 6':
A B = Uy(2z,h) and 0 =6+ A6.

Note that all classical first-order optimizers can be written in this form with ¢ = (. As an illus-
tration, for SGD, b’ = h = 0, z = g, and Usgp(g,0) = (—ag,), where « is the learning rate.

For RMSProp (Tieleman and Hinton 2012), set z = g; h is used to store the average of squared

gradients. Then Urmsprop(9,h) = (—\/;'L%E,h’), where b’ = Bh + (1 — B)g?, B € [0,1], and € is a

tiny positive number for numerical stability.

Similar to Xu et al. (2020), we apply bilevel optimization to optimize § and ¢. First, we collect
M + 1 trajectories T = {79, 71, - ,Tar—1, Tar}- For the inner update, we fix ¢ and apply multiple
steps of gradient descent updates to § by minimizing an inner loss L™, Specifically, for each

trajectory 1; € T, we have

Ab; x veLinner(Ti; 0;, ¢) and 0,41 = 0; + Ab;,

Linner

where Vjy are agent-gradients of . By repeating the above process for M times, we get

Ao 2) 0--- i) 0ys. Here, 8y are functions of ¢. For simplicity, we abuse the notation and still use

01. Next, we use 7)7 as a validation trajectory to optimize ¢ with an outer loss LO"ter:

A¢ o VLo (7r5 001, ¢) and ¢’ = ¢ + Ag,

83

where V,L°"" are meta-gradients of ¢. Since s are functions of ¢, we can apply the chain
rule to compute meta-gradients V,L°"*". Next, we reset 6y = 0); and repeat the above bilevel

optimization process until the end of training.

In our experiments, we use JAX (Bradbury et al. 2018) to perform reverse-mode automatic
differentiation. Specifically, we apply the jax.grad() function to compute the agent-gradients
VoL™er For meta-gradients VL™ which involve higher-order derivatives, JAX’s autodiff en-
ables straightforward computation by simply stacking jax.grad(), as the functions that compute

derivatives are themselves differentiable.

5.2 Related Work

Our work is closely related to two areas: optimization in RL and learning to optimize in SL.

5.2.1 Optimization in Reinforcement Learning

In practice, temporal-difference (TD) is widely applied for value iterations in many RL algorithms:

V(st) < V(s) + a(reer + YV (si+1) — V(st)), (5.1)

where « is the learning rate, s; and s;11 are two successive states, and r,41 4+ vV (sy+1) is named the
TD target. TD targets are usually biased, non-stationary, and noisy due to changing state-values,
complex state transitions, and noisy reward signals (Schulman et al. 2016). They usually induce a
changing loss landscape that evolves during training. As a result, the agent-gradients usually have

high bias and variance which can lead to sub-optimal performance or even a failure of convergence.’

Henderson et al. (2018) tested different optimizers in RL and pointed out that classical adaptive
optimizers may not always consider the complex interactions between RL algorithms and environ-

ments. Sarigiil and Avci (2018) benchmarked different momentum strategies in deep RL and found

In this chapter, we use the term agent-gradients to refer to gradients of all parameters in a learning agent, which
may include policy gradient, gradient of value functions, gradient of other hyper-parameters.

84

that Nesterov momentum is better at generalization. Bengio et al. (2020a) took one step further
and showed that unlike SL, momentum in TD learning becomes doubly stale due to changing pa-
rameter updates and bootstrapping. By correcting momentum in TD learning, the sample efficiency
can be improved. These works together indicate that it may not always be appropriate to bring
optimization methods in SL directly to RL without considering the unique properties in RL. Unlike
these works which hand-design new optimizers for RL, we adopt a data-driven approach and apply

meta-learning to learn an RL optimizer from data generated in the agent-environment interactions.

5.2.2 Learning to Optimize in Supervised Learning

Initially, learning to optimize is only applied to tune the learning rate (Jacobs 1988, Sutton 1992a,
Mahmood et al. 2012). Recently, researchers started to learn an optimizer completely from scratch,
i.e., not just tune the learning rate but learn the entire weight update function. Andrychowicz
et al. (2016) implemented learned optimizers with long short-term memory networks (Hochreiter
and Schmidhuber 1997) and showed that learned optimizers could generalize to unseen tasks. Li
and Malik (2017) applied a guided policy search method to find a good optimizer. Wichrowska
et al. (2017) introduced a hierarchical recurrent neural network (RNN) (Medsker and Jain 2001)
architecture, which greatly reduces memory and computation, and was shown to generalize to
different network structures. Metz et al. (2022a) developed learned optimizers with multi-layer

perceptions, which achieve a better balance among memory, computation, and performance.

Training learned optimizers from scratch are known to be hard. Part of the reason is that they
are usually trained by truncated backpropagation through time, which leads to strongly biased gra-
dients or exploding gradients. To overcome these issues, Metz et al. (2019) presented a method to
dynamically weigh a reparameterization gradient estimator and an evolutionary strategy style gra-
dient estimator, stabilizing the training of learned optimizers. Vicol et al. (2021) resolved the issues
by dividing the computation graph into truncated unrolls and computing unbiased gradients with
evolution strategies and gradient bias corrections. Harrison et al. (2022) investigated the training

stability of optimization algorithms and proposed to improve the stability of learned optimizers by

85

0.8 0.8 0.8
0.7 0.74 0.7
2 2 2
@ 0.6 @ 0.6 @ 0.6
5 o5 :
505 305 3os
50‘4 50.4~ 50,4
So3 S 03 B3
Qo Q Qo
202 ©0.24 ©0.2
a o a
0.1 0.14 0.1
0.0+ 0.0 .0
-9 -8 -7 -6 -5 -4 -3 -2 -1 -9 -8 -7 -6 -5 -4 -3 -2 -1 -9 -8 -7 -6 -5 -4 -3 -2 -1
log(|g| +107%) log(]g| +1078) log(|g| + 1078)
(a) At the beginning of training (b) In the middle of training (c) At the end of training

Figure 5.1: A visualization of agent-gradient distributions at different training stages, showing that
the agent-gradient distribution is non-IID during training. All agent-gradients are collected during
training A2C in big_dense long, optimized by RMSProp. We compute log(|g| + 10~%) to avoid
the error of applying log function to non-positive agent-gradients.

adding adaptive nominal terms from Adam (Kingma and Ba 2015) and AggMo (Lucas et al. 2019).
Metz et al. (2020a) trained a general-purpose optimizer by training optimizers on thousands of tasks
with a large amount of computation. Following the same spirit, Metz et al. (2022b) continued to
perform large-scale optimizer training, leveraging more computation (4,000 TPU-months) and more
diverse SL tasks. The learned optimizer, VeL O, requires no hyperparameter tuning and works well
on a wide range of SL tasks. VeLO is the precious outcome of long-time research in the area of
learning to optimize, building on the wisdom and effort of many generations. Although marking a
milestone for the success of learned optimizers in SL tasks, VeLO still performs poorly in RL tasks,

as shown in Section 4.4.4 in Metz et al. (2022b).

The failure of VeLO in RL tasks suggests that designing learned optimizers for RL is still a
challenging problem. Unlike previous works that focus on learning optimizers for SL, we aim to
learn to optimize for RL. As we will show next, our method is simple, stable, and effective, without
using complex network structures or incorporating numerous human-designed features. As far as

we know, our work is the first to demonstrate the success of learned optimizers in deep RL tasks.

86

5.3 Issues in Learning to Optimize for Reinforcement Learning

Learned optimizers for SL are infamously hard to train, suffering from high training instabil-
ity (Wichrowska et al. 2017, Metz et al. 2019; 2020a). Learning an optimizer for RL is even
harder (Metz et al. 2022b). In the sections that follow, we identify two important issues in learning

to optimize for RL.

5.3.1 The Agent-Gradient Distribution is Non-IID

In RL, a learned optimizer takes the agent-gradient g as an input and outputs the agent-parameter
update Af. To investigate the hardness of learning an optimizer for RL, we collect agent-gradients
by training A2C (Mnih et al. 2016) in big dense long (see Section 5.5 for details) for 30M steps
with learning rate 3e — 3, optimized by RMSProp (Tieleman and Hinton 2012). All collected agent-
gradients are divided into 30 parts by time-steps. We then plot the agent-gradients in the first,
sixteenth, and last parts as the agent-gradient distributions at the beginning, middle, and end of
training, respectively. The plotted agent-gradients are shown with logarithmic z-axis in Figure 5.1.
The y-axis shows the probability density. Clearly, the agent-gradient distribution is non-I1ID, chang-
ing throughout the training process. Specifically, at the beginning of training, there are two peaks
in the agent-gradient distribution. In the middle of training, most agent-gradients are non-zero,
concentrated around 1073, At the end of the training, a large portion of the agent-gradients are
zeros. It is well-known that a non-IID input distribution makes training more unstable and reduces
learning performance in many settings (Ma et al. 2022, Wang et al. 2024, Khetarpal et al. 2022).
Similarly, the violation of the IID assumption would also increase learning instability and decrease
efficiency for training learned optimizers. Note that this issue exists in both learning to optimize
for SL and RL. However, the agent-gradient distribution from RL is generally more non-IID than

the gradient distribution from SL, since RL tasks are inherently more non-stationary.

87

5.3.2 A Vicious Spiral of Bilevel Optimization

Learning an optimizer while optimizing parameters of a model is a bilevel optimization, suffering
from high training instability (Wichrowska et al. 2017, Metz et al. 2020a, Harrison et al. 2022). In
RL, due to highly stochastic agent-environment interactions, the agent-gradients have high bias and

variance, which make the bilevel optimization even more unstable.

Specifically, in SL, it is often assumed that the training set consists of IID samples. However, the
input data distribution in RL is non-IID, which makes the whole training process much more unsta-
ble and complex, especially when learning to optimize is involved. In most SL settings, true labels
are noiseless and time-invariant. For example, the true label of a written digit 2 in MNIST (Deng
2012) is y = 2, which does not change during training. In RL, TD learning (see Equation (5.1))
is widely used, and TD targets play a similar role as labels in SL. Unlike labels in SL, TD tar-
gets are biased, non-stationary, and noisy, due to highly stochastic agent-environment interactions.
This leads to a loss landscape that evolves during training and potentially results in the deadly
triad (Van Hasselt et al. 2018) and capacity loss (Lyle et al. 2021). Moreover, in SL, a lower loss
usually indicates better performance (e.g., higher classification accuracy). But in RL, a lower outer
loss is not necessarily a good indicator of better performance (i.e., higher return) due to a changing
loss landscape. Together with biased TD targets, the randomness from state transitions, reward
signals, and agent-environment interactions, make the bias and variance of agent-gradients rela-
tively high. In learning to optimize for RL, meta-gradients are afflicted with large noise induced
by the high bias and variance of agent-gradients. With noisy and inaccurate meta-gradients, the
improvement of the learned optimizer (i.e., the outer update) is unstable and slow. Using a poorly
performed optimizer, policy improvement (i.e., the inner update) is no longer guaranteed. A poorly
performed agent is unlikely to collect “high-quality” data to boost the performance of the agent and
the learned optimizer. In the end, this bilevel optimization gets stuck in a vicious spiral: a poor

optimizer — a poor agent policy — collected data of low-quality — a poor optimizer — - - -.

88

5.4 Optim4RL: A Learned Optimizer for Reinforcement Learning

To overcome the issues in Section 5.3, we propose a learned optimizer for RL, named Optim4RL,
which incorporates pipeline training and a novel optimizer structure. As we will show next, Op-

tim4RL is more robust and efficient to train than previous methods.

5.4.1 Pipeline Training

In Figure 5.1, we show that the agent-gradient distribution is non-IID during training. Generally, a
good optimizer should be well-functioned under different agent-gradient distributions in the whole
training process. To make the agent-gradient distribution more IID, we propose pipeline training.

2

reset unit 1 reset unit 2 reset unit 3 8

atr=0 atr =4 att =8

4f 5 6 7 8[iteration ¢

T T >

hi— RNN, hi hy RNN, h,

3
1| ;
: MLP; MLP,
2 B /
1
] I
3 : N
' —_— Afe— g
unit n ' reset interval m = 3 I s
(a) Pipeline training (b) The optimizer structure of Optim4RL

Figure 5.2: (a) An example of pipeline training where the reset interval m = 3 and the number
of units n = 3. All training units are reset at regular intervals to diversify training data. (b) The
network structure of Optim4RL. g is the input agent-gradient, h; and h} are hidden states, « is the
learning rate, € is a small positive constant, and A6 is the parameter update.

Instead of training only one agent, we train n agents in parallel, each with its own task and
optimizer state, following the common practice of learned optimizers. Together, the three elements
form a training unit (agent, task, optimizer state); and we have n training units in total. Let m
be a positive integer we call the reset interval. A complete training interval lasts for m training
iterations. In Figure 5.2 (a), we show an example of pipeline training with m = n = 3. To train an

optimizer effectively, the input of the learned optimizer includes agent-gradients from all n training

89

units. Before training, we choose n integers {ri,---,r,} such that they are evenly spaced over
the interval [0, m — 1]. Then we assign 7; to training unit i for i € {1,--- ,n}. We also apply a
delayed start strategy by setting the starting iteration of training unit ¢ as iteration i —1. At training
iteration t, we reset training unit i if r; = ¢ (mod m). By resetting training units at regular intervals
and using the delayed start strategy, it is guaranteed that for most iterations, we can access training
data across one training interval. For instance, at t = 3, the input consists of agent-gradients from
unit 1 at the beginning of an interval, agent-gradients from unit 2 at the end of an interval, and
agent-gradients from unit 3 in the middle of an interval, indicated by the dashed line in Figure 5.2
(a). With pipeline training, the input agent-gradients are more diverse and spread across a whole
training interval, making the input distribution more IID. Ideally, we expect m < m so that the
input consists of agent-gradients from all training stages. In our experiments, n is the number of
training environments; m depends on the training steps of each task, and it has a similar magnitude

as n.

5.4.2 Improving the Inductive Bias of Learned Optimizers

Recently, Harrison et al. (2022) proved that adding adaptive terms to learned optimizers improves
the training stability of optimizing a noisy quadratic model. Experimentally, Harrison et al. (2022)
showed that adding terms from Adam (Kingma and Ba 2015) and AggMo (Lucas et al. 2019) im-
proves the stability of learned optimizers as well. However, including human-designed features not
only makes an optimizer more complex but is also against the spirit of learning to optimize—ideal
learned optimizers should be able to automatically learn useful features, reducing the reliance on
human expert knowledge as much as possible. Instead of incorporating terms from adaptive opti-

mizers directly, we design the parameter update function in a similar form to adaptive optimizers:

m

\/v—i—e7

where « is the learning rate, € is a small positive number, and m and v are the processed outputs

Al = -« (5.2)

of dual-RNNs, as shown in Figure 5.2 (b). Specifically, for each input gradient g, we generate two

90

Algorithm 5 A Learned Optimizer for Reinforcement Learning (Optim4RL)

Require: RNN; and RNNy, MLP; and MLP,, hidden states h and hs, input gradient g, e = 1075,
learning rate .

1:g«lg > | denotes the stop-gradient operation
2: hl,x1 — RNNl(hl,g) and 01 = MLP1($1)

3: m = sign(g) exp(o1) > Compute m: 1st pseudo moment estimate
4: ho, 19 + RNNQ(hQ,g2) and oo = MLPQ(.TQ)

5. v = exp(02) > Compute v: 2nd pseudo moment estimate
6: A« —a\/% > Compute the parameter update

scalars o1 and 02. We then set m = gg;gn exp(01) and v = exp(02), where gsign € {—1,1} is the sign

of g. More details are included in Algorithm 5.

By parameterizing the parameter update function as Equation (5.2), we improve the inductive
bias of learned optimizers by choosing a suitable hypothesis space for learned optimizers and reducing
the burden of approximating square root and division for neural networks. In general, we want to
learn a good optimizer in a reasonable hypothesis space. It should be large enough to include as
many good optimizers as possible, such as Adam (Kingma and Ba 2015) and RMSProp (Tieleman
and Hinton 2012). Meanwhile, it should also rule out bad choices so that a suitable candidate
can be found efficiently. An optimizer in the form of Equation (5.2) meets the two requirements
exactly. Moreover, it is generally hard for neural networks to approximate mathematical operations
accurately (Telgarsky 2017, Yarotsky 2017, Boullé et al. 2020, Lu et al. 2021). With Equation (5.2),
a neural network can spend all its expressivity and capacity learning m and v, reducing the burden

of approximating square root and division.

Finally, we combine the two techniques and propose our method—a learned optimizer for RL
(Optim4RL). Following Andrychowicz et al. (2016), our optimizer also operates coordinatewisely
on agent-parameters so that all agent-parameters share the same optimizer. Besides gradients,
many previously learned optimizers for SL include human-designed features as inputs, such as
moving average of gradient values at multiple timescales, moving average of squared gradients, and
Adafactor-style accumulators (Shazeer and Stern 2018). In theory, these features can be learned
and stored in the hidden states of RNNs in Optim4RL. So for simplicity, we only consider agent-

gradients as inputs. As we will show next, despite its simplicity, our learned optimizer Optim4RL

91

achieves satisfactory performance in many RL tasks, outperforming several learned optimizers.

5.5 Experiments

In this section, we first verify that Optim4RL can learn to optimize for RL from scratch. Then,
we show how to train a general-purpose learned optimizer for RL. Finally, we demonstrate that
Optim4RL enjoys the advantage of robust training and achieves strong generalization under different
hyper-parameter settings. Note that in all our experiments, we use JAX (Bradbury et al. 2018) for
automatic differentiation. To ensure compatibility, all algorithms and tasks in this section are also

implemented with JAX.

Tasks Following Oh et al. (2020), we design 6 gridworlds with various properties, such as different
horizons, reward functions, or state-action spaces. In each gridworld, there are N objects. Each
object is described as [, €term, €respawn]. Object locations are randomly determined at the beginning
of each episode, and an object reappears at a random location after being collected, with a prob-
ability of €respawn for each time-step. The observation consists of a tensor {0, 1}N XHXW - where N
is the number of objects, and H x W is the size of the grid. An agent has 9 movement actions for
adjacent positions, including staying in the same position. When the agent collects an object, it
receives the corresponding reward (r x reward scale), and the episode terminates with a probability
of €term associated with the object. The default reward scale is 1. In Table 5.1, we describe the

setting of each gridworld in detail.

Besides gridworlds, we also test our method in Catch (Osband et al. 2020) and Brax tasks (Free-
man et al. 2021). Note that we use Brax tasks instead of the more widely adopted MuJoCo
tasks (Todorov et al. 2012), as MuJoCo is not compatible with JAX. Specifically, Brax tasks are

implemented in JAX and are designed to closely resemble MuJoCo control tasks.

RL Algorithms and Training Settings We mainly consider two RL algorithms—A2C (Mnih

et al. 2016) and PPO (Schulman et al. 2017). For all experiments, we train A2C in gridworlds

92

Table 5.1: The detailed settings of gridworlds.

Setting . . .
m Size (H x W) Objects Horizon

big sparse short 10 x 12 2 x [1.0,0.0,0.05], 2 x [—1.0,0.5,0.05] 50
big sparse long 12 x 10 2 x [1.0,0.0,0.05], 2 x [—1.0,0.5,0.05] 500
big dense short 9x13 2 x [1.0,0.0,0.5], 2 x [-1.0,0.5,0.5] 50
big dense long 13x9 2 x [1.0,0.0,0.5], 2 x [-1.0,0.5,0.5] 500
small dense long 6 x4 [1.0,0.0,0.5], [-1.0,0.5,0.5] 500
small dense short 4x6 [1.0,0.0,0.5], [-1.0,0.5,0.5] 50

and train PPO in Brax tasks. For A2C training in gridworlds, the feature net is an MLP with
hidden size 32 for the “small” gridworlds. For the “big” gridworlds, the feature net is a convolution
neural network (CNN) with 16 features and kernel size 2, followed by an MLP with output size 32.
Unless mentioned explicitly, we use ReLLU as the activation function. We set A = 0.95 to compute
A-returns. The discount factor v = 0.995. One rollout has 20 steps. The actor loss weight is 1.0, the
critic loss weight is 0.5, and the entropy weight is 0.01. The final inner loss is defined as a weighted

sum of the actor loss, the critic loss, and the entropy loss.

For PPO training in Brax games, we use the same settings in Brax examples.? Specifically,
the actor loss weight is 1.0, the critic loss weight is 0.5, and the entropy weight is 0.01 (Ant and
Pendulum) or 0.001 (Humanoid and Walker2D). Similar to A2C, the final inner loss is also a weighted

sum of the actor loss, the critic loss, and the entropy loss.

For Optim4RL, due to resource constraints, we choose a small network with two gated recurrent
unit (GRUs) (Cho et al. 2014) of hidden size 8; both multi-layer perceptrons (MLPs) have two
hidden layers of size 16. We use Adam to optimize the learned optimizers, with the outer losses
set identical to the corresponding inner losses. To meta-learn optimizers, we set M = 4 in all
experiments; that is, for every outer update, we do 4 inner updates. Potentially, a larger M could
lead to more farsighted learning but results in increasing memory and computation requirements.
We set M = 4 as a trade-off, which works well in practice. Following common practice (Lu et al.

2022), we report results averaged over 10 runs.

“https://github.com/google/brax/blob/main/notebooks/training.ipynb

93

https://github.com/google/brax/blob/main/notebooks/training.ipynb

304 70004 12000

6000+ = 10000

y ;
~ — RMSProp 8000
/. — Adam
/ —— Optim4RL: 6000
,% 4000
10007 GD!
0 / LinearOptim 2000

A —— lnearoptm T .. VelO
—1000 T T 0

50001

¥ —— RMSProp
— Adam
—— Optim4RL
— STAR
L2LGD?
—— LinearOptim

4000+
—— RMSProp
—— Adam

—— Optim4RL

30001

Return
Return
Return

20001

AN ”~

—— LinearOptim

60 80 100

80 100 0 20 40
Step (millions)

04 05 o 5 10 15 20 25 30 20

00 01 02 03 40 60
Step (millions) Step (millions) Step (millions)

(a) Catch (b) big_dense long (c) Ant (d) Humanoid

Figure 5.3: The optimization performance of different optimizers in four RL tasks. Note that the
performance of VeLO is estimated based on Figure 11 (a) in Metz et al. (2022b). All other results
are averaged over 10 runs, and the shaded areas represent 90% confidence intervals. Optim4RL is
the only learned optimizer that achieves satisfactory performance in all tasks.

5.5.1 Learning an Optimizer for RL from Scratch

We first show that it is feasible to train Optim4RL in RL tasks from scratch, while learned optimizers
for SL do not work well consistently in RL tasks. We consider both classical (Adam and RMSProp)
and learned optimizers (L2LGD? (Andrychowicz et al. 2016), STAR (Harrison et al. 2022), and
VeLLO (Metz et al. 2022b)) as baselines. Except for VeLO, we meta-learn optimizers in one task and

then test the fixed learned optimizers in this specific task.

For L2LGD?, the model consists of a GRU with hidden size 8, followed by an MLP with hidden
sizes [16,16]. For STAR, we use the official implementation from learned optimization.? Unlike
the supervised learning setting, we set weight decay to 0 since a positive weight decay in STAR
leads to much worse performance. For a fair comparison, we apply pipeline training to train all
learned optimizers. For Catch, the agent learning rate is le—3; the number of environments (i.e., the
number of training units n) is 64; the reset interval m is chosen from {32,64}. For big dense long,
the agent learning rate is 3e — 3; the number of environments is 512; the reset interval m is chosen
from {72,144,288,576}. For Ant and Humanoid, the agent learning rate is 3e — 4; the number
of environments is 2048; the reset interval m is chosen from {32,64,128,256,512}. Furthermore,
in order to reduce memory requirement, we set the number of mini-batches to 8; and change the
hidden sizes of the value network from [256, 256, 256, 256, 256] to [64, 64, 64, 64,64]. We use Adam

as the meta optimizer and choose the meta learning rate from {le — 5,3e — 5,1e — 4,3e — 4, le —

3https://github.com/google/learned_optimization/blob/main/learned_optimization/learned_
optimizers/adafac_nominal.py

94

https://github.com/google/learned_optimization/blob/main/learned_optimization/learned_optimizers/adafac_nominal.py
https://github.com/google/learned_optimization/blob/main/learned_optimization/learned_optimizers/adafac_nominal.py

3,3¢ — 3,1e — 2}.

The optimization performance of optimizers is measured by returns averaging over 10 runs, as
shown in Figure 5.3. In general, L2LGD? fails in all four tasks. In Catch, both STAR and Optim4RL
perform better than classical optimizers (Adam and RMSProp), achieving a faster convergence
rate. In Ant, Optim4RL and STAR perform pretty well, on par with Adam and RMSProp, while
significantly outperforming the state-of-the-art optimizer—VeLLO. However, STAR fails to optimize
effectively in big dense long; in Humanoid, STAR’s performance is unstable and crashes in the
end. Optim4RL is the only learned optimizer that achieves stable and satisfactory performance in
all tasks, which is a significant accomplishment in its own right, as it demonstrates the efficacy of

our approach and its potential for practical applications.

The Advantage of the Inductive Bias of Optim4RL As an ablation study, we demonstrate
the advantage of the inductive bias of Optim4RL by comparing it with LinearOptim, which has a
“linear” parameter update function: Af = —a(axg+0b), where « is the learning rate, a and b are the
outputs of an RNN model. Specifically, the model of LinearOptim consists of a GRU with hidden
size 8, followed by an MLP with hidden sizes [16, 16]. The only difference between LinearOptim and
Optim4RL is the inductive bias—the parameter update function of LinearOptim is in the form of
a linear function. In contrast, the parameter update function of Optim4RL is inspired by adaptive
optimizers (see Equation (5.2)). As shown in Figure 5.3, LinearOptim fails to optimize in all tasks,

verifying the advantage of the inductive bias of Optim4RL.

The Effectiveness of Pipeline Training By making the input agent-gradient distribution more
IID and less time-dependent, pipeline training could improve the training stability and efficiency.
To verify this claim, we compare the optimization performance of Optim4RL with and without
pipeline training in Table 5.2. We observe minor performance improvement in two gridworlds
(small dense longand big dense long) and more significant improvement in two Brax tasks (Ant

and Humanoid), confirming the effectiveness of pipeline training.

95

70004

6000

5000

£ 4000+
s

—— Optim4RL
e VelO

2000 p -
/ o o ol
1000 a a 300 a
— Optim4RL —— OptimaRL 5 —— Optim4RL

40 0

& 3000

100 00 25 50 75 100 125 150 175 20.0 0 To

80 100 0 20 40 60 80 20 30
Step (millions) Step (millions) Step (millions)

2‘0 4b éO
Step (millions)

(a) Ant (b) Humanoid (c¢) Pendulum (d) Walker2D

Figure 5.4: Optim4RL shows strong generalization ability and achieves good performance in Brax
tasks, although it is only trained in six simple gridworlds from scratch. For comparison, VeLLO (Metz
et al. 2022b) is trained for 4,000 TPU-months with thousands of tasks but only achieves sub-optimal
performance in Ant.

Table 5.2: The performance of Optim4RL with and without pipeline training. All results are
averaged over 10 runs, reported with 90% confidence intervals. In general, pipeline training helps
improve performance.

Method Task small dense long big dense long Ant Humanoid

With Pipeline Training 32.22+0.52 23.10+0.31 6421+355 8440+364
W.o. Pipeline Training 30.64£0.69 22.47£0.51 5038+235 6557£1055

5.5.2 Toward a General-Purpose Learned Optimizer for RL

A general-purpose optimizer should perform well even when the input gradients are at various
scales. To meta-train a learned general-purpose optimizer, first we design six gridworlds such
that the generated agent-gradients in these tasks vary across a wide range. To demonstrate the
generalization ability of Optim4RL, we then meta-train Optim4RL in these gridworlds with A2C

and test it in Brax tasks with PPO.

Specifically, we use Adam as the meta optimizer and choose the meta learning rate from {le —
5,3¢—5,1e—4,3e—4,1e—3,3e—3}. The number of environments/training units n is 512. The reset

interval m is chosen from {72,144, 288, 576}. The reward scales of all gridworlds are in Table 5.3.

As shown in Figure 5.4, Optim4RL achieves satisfactory performance in these tasks, showing
a strong generalization ability. Note that Optim4RL surpasses VeLO (the state-of-the-art learned
optimizer) significantly in Ant. This is a great success since VeLO is trained for 4,000 TPU-

months on thousands of tasks while Optim4RL is only trained in six toy tasks for a few GPU-hours.

96

Table 5.3: The reward scales of gridworlds used for learning a general-purpose optimizer.

Gridworld Reward Scale
small dense long 1000
small dense short 100

big sparse short 100

big dense short 10

big sparse long 10

big dense long 1

Finally, Optim4RL is also competitive compared with classical human-designed optimizers (Adam
and RMSProp), even though it is entirely trained from scratch. Training a universally applicable
learned optimizer for RL tasks is an inherently formidable challenge. Our results demonstrate the
generalization ability of Optim4RL in complex unseen tasks, which is a great achievement in itself,

proving the effectiveness of our approach.

5.5.3 Achieving Robust Training and Strong Generalization

Generally, we find it hard to train learned optimizers partly due to not-a-number (NaN) errors
during training, even when gradient clipping or gradient normalization is applied. For example,
among all meta-training hyper-parameter settings, we fail to train STAR due to NaN errors in more
than 80% and 50% settings in Humanoid and Ant, respectively. However, NaN errors are seldom
encountered when we meta-train Optim4RL, LinearOptim, and L2LGD? in Humanoid and Ant;

and Optim4RL is the only one that achieves satisfactory performance among them.

Next, we show that Optim4RL not only generalizes to unseen tasks, but also transfers to different
hyper-parameter settings. To be specific, we train our learned optimizer Optim4RL under the default
hyper-parameter setting and then test it under different hyper-parameter settings in two gridworlds
— small dense shortand big dense long. We report the returns at the end of training, averaged
over 10 runs. As shown in Table 5.4, Table 5.5, and Table 5.6, Optim4RL is robust under different

hyper-parameter settings, such as GAE A, entropy weight, and discount factor.

97

Table 5.4: The performance of Optim4RL with different GAE X values in two gridworlds. All results
are averaged over 10 runs, reported with 90% confidence intervals.

Task Parameter Value Return

small dense short 0.9 11.51+0.19
small dense short 0.95 11.25+0.16
small dense short 0.99 10.81+0.17
small dense short 0.995 10.66+0.17
big dense long 0.9 23.35+0.76
big dense long 0.95 23.57£0.60
big dense long 0.99 21.31£0.64
big dense long 0.995 20.55£0.54

Table 5.5: The performance of Optim4RL with different entropy weights in two gridworlds. All
results are averaged over 10 runs, reported with 90% confidence intervals.

Task Parameter Value Return

small dense short 0.005 11.01+0.16
small dense short 0.01 11.134+0.09
small dense short 0.02 11.2940.12
small dense short 0.04 11.25+0.16
big dense long 0.005 22.41£0.59
big dense long 0.01 22.45%0.79
big dense long 0.02 22.59£0.43
big dense long 0.04 19.96£1.30

Table 5.6: The performance of Optim4RL with different discount factors in two gridworlds. All
results are averaged over 10 runs, reported with 90% confidence intervals.

Task Parameter Value Return

small dense short 0.9 12.474+0.14
small dense short 0.95 12.32+0.09
small dense short 0.99 11.484+0.09
small dense short 0.995 11.01+0.17
big dense long 0.9 18.13+3.27
big dense long 0.95 25.01£1.42
big dense long 0.99 25.45+0.47
big dense long 0.995 22.07£0.81

98

5.6 Conclusion

In this section, we analyzed the hardness of learning to optimize for RL and studied the failures
of learned optimizers in RL. Our investigation reveals that agent-gradients in RL are non-IID and
have high bias and variance. To mitigate these problems, we introduced pipeline training and a
novel optimizer structure. Combining these techniques, we proposed a learned optimizer for RL,
Optim4RL, which can be meta-learned to optimize RL tasks entirely from scratch. Although only

trained in toy tasks, Optim4RL showed its strong generalization ability to unseen complex tasks.

99

Chapter 6

Model-free Policy Learning with Reward

Gradients

Policy gradient methods are increasingly popular in the reinforcement learning (RL) community,
with applications in computer games (Vinyals et al. 2019, Berner et al. 2019, Zha et al. 2021, Badia
et al. 2020), simulated robotic tasks (Haarnoja et al. 2018, Lillicrap et al. 2016a), and recommenda-
tion systems (Zheng et al. 2018, Zhao et al. 2018, Afsar et al. 2022). However, they still suffer from
low sample efficiency especially under non-stationarity, hindering their applicability to real-world
situations. One way to mitigate this inefficiency, is to make best use of prior knowledge into the
learning system, such as reward functions. Reward functions are usually known, allowing access
to not only scalar reward signals but also reward gradients. Attempts to use reward gradients are
already observed in prior works (Cai et al. 2020b, Heess et al. 2015, Hafner et al. 2019), but all these
methods require a learned transition model which is hard to accurately obtain (van Hasselt et al.
2019, Jafferjee et al. 2020). In this chapter, we pose the following question: how can we leverage

reward gradients to improve learning efficiency under non-stationarity without learning a model?

To answer this question, we develop a new policy gradient estimator—the reward policy gradient
(RPG) estimator—that incorporates reward gradients. Specifically, our RPG estimator combines

likelihood ratio (LR) and reparameterization (RP) gradients to avoid the need for a transition

100

model, while taking full advantage of reward gradients. This hybrid approach allows the RPG es-
timator to better track evolving reward landscapes and adapt policies accordingly. Based on this
new estimator, we propose a new on-policy policy gradient algorithm—the RPG algorithm. We
empirically show that by incorporating reward gradients into the gradient estimator, the bias and
variance of estimated gradient decrease significantly, enabling more stable and efficient learning
under non-stationarity. To analyze the benefit of reward gradients and the properties of our esti-
mator, we test our algorithm on bandit and simple Markov decision processes, where the ground
truth gradient is known in closed-form. Moreover, we compare RPG with a state-of-the-art actor-
critic algorithm—proximal policy optimization (PPO)—on challenging problems, showing that our

algorithm outperforms the baseline algorithm.

In the rest of this chapter, we first review the status of reward gradients prior to our work. We
then move to our major theoretical result—the reward policy gradient theorem. Finally, we present

RPG algorithm as well as the experimental results.

6.1 Only Model-Based Methods Use Reward Gradients So Far

In RL, policy gradient methods can be broadly classified into two categories: model-free and model-
based algorithms. Model-free methods, such as REINFORCE (Williams 1992), TRPO (Schulman
et al. 2015), and PPO (Schulman et al. 2017), estimate policy gradients directly from sampled
trajectories without requiring an explicit transition model. These methods are generally more
robust to model inaccuracies but suffer from high variance in gradient estimates and limited sample
efficiency. In contrast, model-based methods requires a transition model to enable planning or

improve sample efficiency.

Notably, several model-based methods have explored the use of reward gradients. For example,
DVPG (Cai et al. 2020b) uses a learned deterministic model to backpropagate through the reward
and value functions. SVG (Heess et al. 2015), which use a stochastic model of the dynamics and
backpropagate gradients through sampled trajectories. Dreamer (Hafner et al. 2019), which learns a

latent dynamics model to enable gradient-based optimization of policies through imagined rollouts.

101

Despite their innovations, all of these approaches rely on a learned transition model to compute
gradients, which remains a challenging problem—particularly in high-dimensional or partially ob-
servable settings. Empirical studies have shown that model errors can accumulate during rollouts
and destabilize training (van Hasselt et al. 2019, Jafferjee et al. 2020), sometimes outweighing the
potential benefits of reward gradients. On the other hand, to the best of our knowledge, no existing

model-free policy gradient algorithm has leveraged reward gradients without relying on a model.

6.2 Reward Policy Gradient Theorem

In this section, we first present our main theoretical result—the reward policy gradient theorem—a
new policy gradient theorem that incorporates the gradient of the reward function without using a
state transition function explicitly. The reward policy gradient theorem requires perfect knowledge
of the reward and the value function. We show that an unbiased estimate can be obtained using
approximated reward and state-value functions, by defining a set of compatible features, similarly

to Sutton et al. (2000).

We begin by assuming that the action a is sampled from the policy m parameterized with 6 given
the current state s: a ~ mp(+|s). We reparameterize the policy with a function f, a = fg(e;s), € ~
p(-). Let function g be the inverse function of f, that is, ¢ = gg(a;s) and a = fy(go(a;s);s).

Furthermore, following Imani et al. (2018), we make two common assumptions on the MDP.

We use the same objective J(f) as in Equation (2.8). Then under these two assumptions, we

have the following results.
Theorem 6.1 (Reward Policy Gradient). Suppose that the MDP satisfies Assumption 2.1, Assump-
tion 2.2, and Assumption 2.3, then

Vol (6) = [d (5)malals)P(s'5.0) [ToR(s. fol)l + 7V () Vi log mo(al)] s,
where d™ (s') = [Y7207 po(s)P(s — &', t,mp)ds is the (discounted) stationary state distribution for
policy g and P(s — §',t,mg) is the transition probability from s to s with t steps under policy my.

102

Proof. We first apply the policy gradient theorem (Sutton et al. 2000) and get an intermediate
result in form of the action-value function. Next, we split the action-value function in the policy
gradient theorem into two parts: the immediate reward and the state-value of the next state. To
incorporate reward gradients, we use the RP technique to the immediate reward part; to avoid the
knowledge of the model, we apply the LR estimator to the state-value part. Finally, we combine

both parts into an unbiased gradient estimation.

By the policy gradient theorem, we have
VoJ(0) = /d”‘) (s)m(als)Qnr, (s, a)Veylog my(als)dads.

Next, we split the action-value function Qr,(s,a) into two parts:

Vo (0)

_ / 4™ (s)mg(als) [R(s,a)—kfy / P(s’\s,a)Vﬂe(s’)ds’} Vo log g a]s)dads

_ / 47 (50 (als) R(s, @) Vg log mo(a| s)dsda + / 47 (59 (] s)P(s'|s, @) Vi, (s') Vg log 7o (als)dsdads’
- / d" () R(s,) Voo als)dsda + 7 / 0" (s)79(als)P(s'|s, @) Vi (5') Vg log 79(als)dsdads’

- / d™ (s)Vy (/ 7r9(a|s)R(s,a)da> ds + 7 / 4™ (s)7g(als)P (5|5, a) Vi, (5) Vg log mg(als)dsdads’.

Now, we apply the reparameterization technique to the first part,

Vo J(0)
d”G)V (mo(als)R(s a)da) ds +7/d7r9 (s)mo(a|s)P(s']s, a)Vx, (s) Vg log mg(als)dsdads’
d”")V < p(e)R(s, fo(e; s))de) ds + V/d“"(s)we(a\s)P(s’s,a)Vﬂg(s')Vg log mg(als)dsdads’

_ / 47 (s) (/ PR (s, fole: 3))de> ds + 4 / 0™ (50 (a]s)P(s' |3, @) Vi, (5') Vi log mo(a]s)dsdads’.

103

We then apply the reverse operation of reparameterization to the first part,

VoJ(6)
_ / ™ (s) (/ p(VeR(s, fole: s))de> ds
ty / ™ (s)mg(als)P(s'|5, a) Vi, (s') Vg log g (als)dsdads’
= [[motals) Vorts, s)) s
+y / ™ (5)m(als)P (5|5, @) Vi, (s') Vg log 7g(als)dsdads’

:/d“‘) (s)ma(als)P(s'|s, a) [VoR(s, fo(€;5))|emgy(ass) + Vo (') Vo log mg(als)] dsdads’.

This theorem provides a new way of computing the objective gradients. Specifically, it presents
the objective gradient in terms of both LR and RP gradients as additive components. The theorem
also presents the first model-free unbiased gradient estimator of the objective function that utilizes
gradients of the reward function. Some algorithms also estimate the gradient of the objective using
gradients of the reward function, such as DVPG (Cai et al. 2020b) and SVG (Heess et al. 2015).
However, they are model-based algorithms in the sense that they require the knowledge of the state
transition function to estimate an unbiased gradient, while our theorem points out a model-free

approach without the knowledge of the state transition.

Theorem 6.2 (Reward Policy Gradient with Function Approximation). Consider a parametric

approximation of the reward function Rw(s, a) and a parametric approzimation of the value function

V4(s) such that
Vaf%w(s, a) =V} fole; 8)|e=gy(as)w V(5,0) € S x A
and

/dm(s)m(ab)P(s'\s,a)V¢V¢(s')dsda = /d’rg(s)ﬂg(a|s)P(s'|S,a)Vg log mg(a|s)dsda, Vs’ € S

104

where

¢ =argmin E [(V¢(s’) —V(s))?

é s~d™0
a~my
s'~P(-|s,a)
and
w = arg min 15"9 (VaRoy(s,a) — VaR(s,a))T(VaRu(s,a) — VaR(s, a))] .
“o @
Then,
VeJ(0)= E_ VoRu(s, fo(€:5))|ezgy(as) T 7V () Vo logmo(als)| .
S (]6,0)

Proof. By the definition of w, we have

w=argmin E_ [(VaRw(s, a) — VoR(s,a))T(VaRu(s,a) — VoR(s, a))
an~Tg

— E_ (VaRo(s, a) —vaR(s,a))vwvaRw(s,a)} —0
a~Ty)

= E -(VGRW(S, a) — VqR(s,a))Vafo(e; s)|E:g(a;s)} = 0 (by the first assumption)

s~d™e L
a~my
= SNI%ﬂ-e vaRw(Sv a)vefe(e; S)’e:g(a;s)} = SN]%TFQ [VQR(S, a)VGfG(E; 3)‘e:g(a;s)]
an~Tg) anTg
= SNI%W _veRw(sv fg(f; 3))’e:gg(a;s):| = SNI%,,G [VOR(Sa fg(E; S))‘e:gg(a;s)] .
an~Tg anTg

By the second assumption, we have Vs’ € S,

I%ﬂe P(s’]s,a)vqqub(s’)} = I%ﬂg [P(s'|s,a)Vglogmg(als)] .
g g

105

Multiplying both sides by V 4(s') — V(s'), we obtain the result for all s’ € S,

A~

(Vols') = V() E[P(s]s,a)VeVo(s)| = (Vo) = V(s))_E_[P(sls,a)Vologmo(als)]

s~d™0 s~d™o
a~Ty a~Ty
— E_[(Vos) = VP15, a) VsV ()] = B [(Vel(s') = V($)P(s']s,a)Volog mo(als)]
anTy anTe
— E|(Vels) VTV = E - [(Ve(s) = V() Vologmlals)|
s~d™0 s~d™0
s’NP(-\Z,a) s’~P(-|?9,a)

Note that the universal assumption (Vs' € §) is required; without it, the derivations do not

hold. Now considering the above equation and by the definitions of ¢, we have

p=argmin B [(Vy(s) - V()7
¢

s~d™0
a~Tmy
s'~P(:|s,a)
= E (Vo(s) —V(S’))V¢V¢(S’)} =0
s~ L
S’NQP(ﬁes,a)

— E :(V¢(s') —V(5)) Ve 1og7r9(a|s)} ~0

s~d™0
an~Ty
s'~P(|s,a)
— E_ -V¢(s/)V910gW9(a|s)]: E [V(s)Vologms(als)] -
img g
s'~P(-|s,a) s'~P(:|s,a)

Combine the above results with Theorem 6.1, we have

Vo J(0)

= SNI%TFG [VQR(Sa fo(e; S))‘EZQQ(G;S) + ’YV(S,)VG log 779(0"3)}
S Y

= gwﬂgﬂe [VGRW(‘S? f@(e; 5)) |e=gg(a;s) + 7V¢(Sl)v9 log W@(a|8)] :
SINI;('Iiva)

106

By this theorem, we show that when the reward function and the state-value function are
approximated by sufficiently good function approximators (e.g., neural networks), we can obtain an
unbiased gradient estimation under certain assumptions. The functions R, and V¢ are also known
as compatible approximators (Sutton et al. 2000, Peters and Schaal 2008). Note that ¢, w, and 6

have same dimensions.

6.3 A Reward Policy Gradient Algorithm Based on PPO

Based on the reward policy gradient theorem, many different policy gradient algorithms can be
developed that benefit from reward gradients without using a transition model. In this section, we
develop a new policy gradient algorithm based on an existing deep policy gradient method called
Proximal Policy Optimization (PPO). First, we introduce the baseline subtraction technique which
is generally used in policy gradient algorithms to reduce variance. To be specific, we subtract the

baseline Vr,(s) from vV, (s') in the RPG estimator:
VoR(s, fo(€;5)) + (VW (s) = Viry (5)) Vo log mg (al s). (6.1)

Note that no bias is introduced in this step (Sutton and Barto 2018).

In practice, when the state-value function and the reward function are unknown to the agent,
we could use function approximators (e.g., neural networks) to approximate them. Furthermore,
we use A-return (Sutton and Barto 2018) G7,4 to replace Vi, (s') in Equation (6.1), which has a

close relationship to GAE HtGAE()‘) (Schulman et al. 2016), i.e., G} = HtGAE()‘)

+ Vi, (st), where
A € [0,1]. Using A-returns significantly reduce the variance of gradient estimations while retaining

tolerable biases (Schulman et al. 2016).

A short introduction of PPO can be found in Section 2.2.2. The RPG algorithm builds on PPO
with two major modifications. First, we replace the original LR estimator in PPO with the RPG
estimator. Second, in order to use reward gradients, we have a neural network to learn the reward

function. Basically, RPG can be viewed as a version of PPO but using the RPG estimator to do

107

gradient estimation. The detailed algorithm description for RPG is listed in Algorithm 6.

Algorithm 6 Reward Policy Gradient Algorithm (RPG)

1: Input: initial policy parameters 6, value estimate parameters ¢, and reward estimate parameters

w.
2: for k=1,2,... do

3: Collect trajectories D = {r;} with policy .

4:

5: Compute G; and G = HtGAE()‘) + V¢(St).

6:

7: Compute PPO advantage H; = HtG AEX and normalize.

8: for epoch =1,2,... do

9: Slice trajectories D into mini-batches.

10: for each mini-batch B do

11: Set p,(0) by Equation (2.13) and detach it from the computation graph.

12: Reparameterize the action Ay = fg(e;St).

13: Compute the predicted reward 7111 = Ry (St, fo(€er; St))-

14:

15: Update 6 by maximizing Eg[p,(0) HRPC], where HRYCG = 7,1 + (vG)y — V¢(St)) X

log T (At‘St))
Update ¢ by minimizing Eg[(V4(S;) — G¢)?].

A

—_
=2

Update w by minimizing Eg[(Ry(S:, A¢) — reg1)?].

,_.
=

6.4 Experiments

In this section, we first analyze the bias-variance trade-off for the RPG estimator on a linear
quadratic Gaussian (LQG) control task. We then gain more understanding to the advantages and
drawbacks of using reward gradients on two bandit tasks. Furthermore, we investigate the benefit
of RPG when the reward function is known. Finally, we evaluate our algorithm on six MuJoCo

control tasks (Todorov et al. 2012) and one robot task compared to the baseline method.

6.4.1 A Bias-Variance Analysis of the RPG Estimator

Environments can have highly stochastic rewards (Brockman et al. 2016). Knowing the reward
function in advance allows reducing the stochasticity of the gradient estimator. Furthermore, in

most cases, reparameterization gradients exhibit lower variance w.r.t. likelihood ratio gradients (Xu

108

(a) PG (b) RPG

1 x 10° 12

8 x 10% | 1071 —[Bias|
5| Variance

6 x 10%— —— MSE
6

4 x 10% 4]

2 x 10% 2

o 0— = :
20 40 60 80 100 20 40 60 80 100
Samples # Samples

Figure 6.1: The bias, variance, and mean squared error (MSE) of the estimated gradient w.r.t. the
number of samples for the PG estimator (left plot) and the RPG estimator (right plot). The shaded
area representing a 95% interval using bootstrapping techniques. The values of bias, variance, and
MSE for the RPG estimator are significantly smaller than the values for the PG estimator, which
is clear from the Y-axis ranges.

et al. 2019). However, the variance of our estimator depends on many compounding factors (e.g.
reward shapes and environment dynamics) that complicate a theoretical analysis. To compensate

for this gap, we empirically investigate this aspect on a LQG problem.

The LQG control problem is one of the most classical control problems in control theory, with
linear dynamics, quadratic reward, and Gaussian noise. Using the Riccati equations, we can solve
the LQG problem in closed form. This property makes the LQG task an ideal benchmark to do bias-
variance analysis for different policy gradient estimators. Specifically, we consider the discrete-time

LQG problem, defined as

o)
m@ax E 'ytrt s.t. St+1 = ASt + Bat; ry = —StTQSt — atTZat
t=0

ag41 = 6St + 261}; €t ~ N(Oaj)a

where A, B,Q, Z,%, and © are diagonal matrices and © = diag(#). Our policy is Gaussian: a ~
N(Os; X)), where 6 € R2.

109

Given an LQG task, we study how the bias, the variance, and the mean squared error (MSE)
of the estimated gradient vary w.r.t. the number of samples for both the policy gradient (PG)
estimator and the RPG estimator. A similar study can also be found in Tosatto et al. (2021).
Specifically, the discount factor is v = 0.99. The number of steps for each episode is 100. The
policy parameter is chosen randomly to be § = [—1.1104430687690852, —1.3649958298432607]. The

parameters used for the LQG task are

0.01 0 le—4 0 10
A= ; B= ;o Q= ;
0 0.01 0 le—4 0 1
10 0.1 0
R= S Y . s9=1[0.5,0.5].
0 1 0 0.1

In our experiment, we do not subtract a baseline term in either estimator as in Equation (6.1).
Furthermore, we assume that the true reward function and the true value function are provided to
both gradient estimators. Once the reward function is given, the RPG estimator is able to use not
only the reward signals but also reward gradients. However, the PG estimator can only use the

reward signals since it is not designed to use reward gradients.

In Figure 6.1, the left and right plots show the values of the PG estimator and the RPG estimator,
respectively. Clearly, both the bias and the variance of the RPG estimator are significantly smaller
than the ones of the PG estimator, which can be noticed from the Y-axis ranges of the two plots.
This result indicates that by incorporating reward gradients, the RPG estimator is able to reduce

the bias and the variance of gradient estimation substantially.

6.4.2 Benefits and Drawbacks of Reward Gradients

To further understand the role of reward gradients, we design two kinds of bandit tasks—Peaks

and Holes—with continuous action spaces . The reward functions of Peaks and Holes are defined

as r(a) = exp (—(a;;)?) and r(a) = 1 — exp (—‘g—;), as shown in Figure 6.2a and Figure 6.2b,

respectively. In our experiments, a small (0.01x) Gaussian noise is added to all reward signals and

110

Reward and Policy Landscapes Learning Curves

1.6 initial policy 07 —_—
reward (b2=2) L=
1.4 0.9 1 e
—-— reward (b2=8) g rv&:?"’“‘a
1.24 2 ; . ™
9 — reward (b%=32) & 08 PPO (b2=2)
i 2 074 —-— PPO (b2=8)
Zo © —— PPO (b?=32)
g 06 RPG (b?=2)
05 —-— RPG (b?=8)
—— RPG (b2=32)
(’) 2(’)0 4(’)0 6(’)0 8(’)0 10’00
Action Space Trial

(a) Peaks. RPG converges much faster than PPO in the whole training stage, when the variance is
not so large.

200 Reward and Policy Landscapes " Learning Curves
) P : : Fins
---- initial policy e Ry
1.75 4 i
reward (b?=2) 08
1.50 2_ kel
—-— reward (b“=8) § 064
R reward (b?=32) ® PPO (b?=2)
S 0 o4
© 10 T e Py —.— PPO (b2=g)
. - (o))
= 0.75 \‘\. e © 024 —— PPO (b%=32)
AN - e g . RPG (b?=2)
0.50 4 RN \ 4 < o0
AN il —— RPG (b2=8)
0.25 4 \.\ /./ -02 — RPG (b?=32)
0.00 : r — : . . . - - - - -
-6 -4 -2 0 2 4 6 0 500 1000 1500 2000 2500 3000
Action Space Trial

(b) Holes. RPG converges much faster than PPO at the early training stage, under various variance
settings. Then it slows down at the later stage.

Figure 6.2: The reward landscapes of Peaks and Holes as well as the learning curves for PPO and
RPG during training. The initial Gaussian policies are also visualized. All results are averaged
over 30 runs; the shaded areas represent standard errors. The plots show that the reward’s gradient
accelerates learning when it is large but hurts learning when the reward function is too flat.

b? is chosen from [2, 8, 32].

The initial policy distribution is a Gaussian distribution A/(0,0.69). For RPG, we use a neural
network to approximate the true reward function, denoted by Rw(a). In bandit cases, there are
no value functions and we have the following single-sample gradients for PPO and RPG, without

considering normalization for simplicity:

VGZFPO (9) f)t(e)Rtve log g (At)

VoliC(0) = p1(0)Vofo(er) Valtw(a)la=a,, (6.2)

111

where 0 = [u, 0]. We test PPO and RPG on the bandits over 30 runs. The gradient is clipped by 1.

The learning curves of PPO and RPG are visualized in Figure 6.2a and Figure 6.2b. We observe
that as b? increases, the learning speed decreases for both PPO and RPG, on Peaks and Holes. This
is because the magnitude of reward’s gradient decreases as b? increases which reduces Vyl;(6) and

slows down the learning update, as suggested by Equation (6.2).

Furthermore, RPG converges much faster than PPO on Peaks in the whole training period when
b? is not so large. This shows that RPG is able to find the optimal action quicker than PPO, with
the help of a relatively large reward’s gradient. On Holes, RPG escapes from the sub-optimal action
faster than PPO at the early training stage, but it slows down later and performs worse than PPO
in the end. This is not surprising since the reward function is still sharp at the early training stage
(when |a| is small) but tends to become flat later (i.e., |VqRy(a)| is smaller.) which slows down the

learning process of RPG.

Therefore, we conclude that in bandits the reward’s gradient accelerates learning when it is
relatively large but hurts learning when the reward function is too flat. Reward and action-value
gradients are identical in bandits; to compensate that, and we conduct the rest of the studies using

simple and complex MDPs.

6.4.3 The Benefit of Knowing the Reward Function

To explore the role of reward gradients in MDP settings, we design a simple MDP with con-
tinuous state and action spaces— Mountain Climbing. Specifically, S = [-8,8]%, A = [-1,1]%,
so = (0,0),r11 = R(st,ar), and sgy1 = s¢ + ap + € where R(s,a) = exp(—||s + a — v||3),
€ ~ U(—0.005,0.005), and v = (1, —1). Every episode ends in 10 steps. We test PPO (LR gradient)
and RPG (LR gradient + reward gradient) on this MDP for 80,000 steps. The number of epochs
in PPO and RPG are to 1. The batch and mini-batch size are 40. The gradient is clipped by 0.5.

The average returns over 20 runs for each algorithm during training are shown in Figure 6.3.
By utilizing reward gradients, RPG (LR gradient -+ reward gradient) outperforms PPO (LR gradi-

ent) significantly. Moreover, the reward gradients of the true reward function are more helpful to

112

Average Return

— PPO
— RPG (true reward)
RPG (learned reward)

T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000
Step

Figure 6.3: The learning curves for PPO and RPG during training on Mountain Climbing. The
results are averaged over 20 runs, with the shaded area representing one standard error. In terms
of convergence rate, RPG (true reward) > RPG (learned reward) > PPO.

accelerate learning than the reward gradients of a learned one, probably due to a higher accuracy

of gradient estimation; although two versions of RPG reach a similar performance in the end.

6.4.4 Evaluation on MuJoCo Tasks

To further evaluate our algorithm, we measure its performance on six MuJoCo control tasks (Todorov
2014) through OpenAl Gym (Brockman et al. 2016). Our PPO implementation is based on Zhang
(2018) and Achiam (2018), from which most hyper-parameters are adopted. Specifically, following
the above two implementations, we use plain returns instead of A-returns as the target values when
computing the critic loss, as shown in Algorithm 2. We additionally tune certain PPO hyperpa-
rameters to align with the good performance reported in Zhang (2018) and Achiam (2018). Then

we implement RPG based on this version of PPO. All hyper-parameters are listed in Table 6.1.

For the simulated tasks, each algorithm was trained on every task for 3 million steps. For every

5 epochs, we evaluated the agent’s test performance using a deterministic policy for one episode.

113

3500

3000

2500

2000

1500

Average Return

1000

Average Return
P
3

05 1.0 15
Step

(a) HalfCheetah-v2

20 25 3.0
ot

05 1.0 15 20 25 3.0
ot

Step

(d) Swimmer-v2

2500

20004

1500

Average Return

1000

500 4

2500

2000

1500

Average Return

1000

— PPO 500
— RPG

Average Return

05

(b) Hopper-v2

10

15 20 25 30 0.0 05 1.0 15 20 25 3.0
Step Te8 Step 16

(¢) Walker2d-v2

Average Return
oL

1.0

(e) Ant-v2

15 20 25 30 00 05 10 15 20 25 30
Step 1e6 Step

(f) Reacher-v2

Figure 6.4: The learning curves of evaluations on six benchmark tasks for PPO and RPG. The results
are averaged over 30 runs, with the shaded area representing standard errors. RPG outperforms
PPO significantly on three tasks — HalfCheetah, Hopper, and Walker2d.

Table 6.1: The hyper-parameter settings for PPO and RPG on MuJoCo tasks.

Hyper-parameter PPO RPG
Policy network learning rate 3 x 1074 3 x 107
Value network learning rate 1073 1073
Reward network learning rate None 1073
Hidden layers [64, 64] |64, 64]
Optimizer Adam Adam
Time-steps per iteration 2048 2048
Number of epochs 10 10
Mini-batch size 64 64
Discount factor () 0.99 0.99
GAE parameter (\) 0.95 0.95
PPO Clipping (¢) 0.2 0.2
Target KL divergence 0.01 0.01
State Clipping [-10, 10] [-10, 10]
Gradient clipping 2 2

114

Our results are reported by averaging over 30 runs with different random seeds. The learning curves
during evaluation are presented in Figure 6.4. Overall, RPG outperforms PPO significantly on three
tasks — HalfCheetah, Hopper, and Walker2d. It is slightly better on Reacher and worse on Ant,

compared to PPO. On Swimmer, however, PPO has a clear advantage.

6.5 Discussion

Our work focuses more on understanding the properties of the RPG estimator by conducting a
series of analysis on simple environments. Moreover, the RPG theorem only provides a new way
to estimate policy gradient; the implementation of actual algorithms can vary. For example, the
RPG version of the naive actor-critic would be a straight-forward implementation. Our current
implementation builds on PPO, and it benefits from PPO’s techniques as well. To further explore
and exploit the advantage of the RPG estimator, we may develop more advanced implementations
by combining some modern techniques in the future, such as entropy regularization (Haarnoja
et al. 2018), parallel training (Mnih et al. 2016), separating training phases for policy and value
functions (Cobbe et al. 2021), Retrace (Munos et al. 2016), and V-trace (Espeholt et al. 2018),
etc. Our current implementation is just one approach; exploring more possibilities are among the

potential future works resulting from this work.

6.6 Conclusion

In this chapter, we introduced a novel strategy to compute the policy gradient which uses reward
gradients without a model. Based on this strategy, we developed—RPG—a new on-policy policy
gradient algorithm. We showed that our method of using reward gradients is beneficial over the PG
estimator in terms of the bias-variance trade-off and sample efficiency. Experiments showed that

RPG generally outperformed PPO on several simulation tasks.

115

Chapter 7

Conclusion

The final chapter begins by summarizing the key contributions of this thesis. We then discuss the
limitations of our work and outline potential directions for future research. Finally, we conclude

with a closing discussion.

7.1 Summary of Contributions

This thesis aimed to improve the learning efficiency of RL algorithms under non-stationarity, by
proposing several approaches from diverse perspectives. The main contributions are presented
across four core chapters, each tackling specific challenges in RL through novel algorithmic designs,

architectural innovations, and theoretical insights.

e MeDQN: Two memory-efficient DQN variants that replace large replay buffers with state
sampling, achieving high performance and sample efficiency with significantly lower memory
usage.

e Elephant: A novel class of activation functions that mitigates catastrophic forgetting in
neural networks, enhancing memory retention and learning performance of value-based RL
algorithms.

e Optim4RL: A learned optimizer for RL that addresses the non-I1ID, high-bias, and high-

116

variance nature of agent-gradients in RL, enabling RL optimization from scratch and gener-
alization to unseen tasks.
e RPG: A model-free policy gradient method that leverages reward gradients to improve the

bias-variance trade-off and sample efficiency, outperforming PPO in continuous control tasks.

Collectively, these contributions offer a cohesive set of techniques aimed at enhancing the learning

efficiency and robustness of RL under non-stationary conditions.

7.2 Limitations and Future Directions

The presented approaches in this thesis are still limited and could be improved potentially. In this

section, we discuss the limitations of each contribution and explore future work for improvement.

MeDQN There are many open directions for future work. For example, a pre-trained encoder
can be used to reduce high-dimensional inputs to low-dimensional inputs (Hayes et al. 2019; 2020,
Chen et al. 2021), boosting the performance of MeDQN(U) on high-dimensional tasks. Combining
classic memory-saving methods (Schlegel et al. 2017) with our knowledge consolidation approach
may further reduce memory requirement and improve sample efficiency. Generative models (e.g.,
VAE (Kingma and Welling 2013) or GAN (Goodfellow et al. 2014)) could be applied to approxi-
mate d™. The challenge for this approach would be to generate realistic pseudo-states to improve
knowledge consolidation and reduce forgetting. It is also worth considering the usage of various
sampling methods for the knowledge consolidation loss, such as stochastic gradient Langevin dy-
namics methods (Pan et al. 2022b; 2020). A combination of uniform state sampling and real state
sampling might further improve the agent’s performance. Finally, extending our ideas to policy

gradient methods would also be interesting.

Elephant While our results demonstrate the effectiveness of elephant activation functions in
model-free RL, we have not yet explored its applicability in model-based RL. Another limitation is

the lack of a principled method for selecting the hyper-parameters of elephant activation functions.

117

The optimal values for these parameters appear to depend on both the input data and architectural
factors such as the number of input and output features in each layer. In practice, careful tuning a

is required to achieve a favorable stability-plasticity trade-off.

Optim4RL Learning to optimize for RL is a challenging problem. Due to memory and computa-
tion constraints, our current result is limited since we can only train Optim4RL in a small number
of toy tasks. In the future, by leveraging more computation and memory, we expect to extend our
approach to a larger scale and improve the performance of Optim4RL by training in more tasks
with diverse RL agents. Moreover, theoretically analyzing the convergence of learned optimizers is
also an interesting topic. We hope our analysis and proposed method can inspire and benefit future

research, paving the way for better learned optimizers for RL.

RPG RPG is limited to the same class of tasks where reparameterization applies and, thus, not
directly applicable to tasks with discrete actions. However, combined with the Gumbel-Softmax

technique (Jang et al. 2017), it is possible to apply RPG on discrete control tasks as well.

7.3 Final Discussion

My long-term research goal is to develop an intelligent agent capable of continually and efficiently
extracting, accumulating, and leveraging knowledge in the real world. I believe that the ability
to continually learn is essential for a learning agent. On the one hand, intelligent systems that
cannot learn continually will soon be outdated, losing the ability to adapt to the changing world.
On the other hand, continual learning agents could potentially learn new tasks more efficiently by
generalizing existing knowledge to unseen scenarios. As the capacity of learning models continues
to increase, the associated training cost also rises. Training models completely from scratch is
becoming increasingly unfeasible. Consequently, there is a growing imperative to develop efficient

continual learning agents to reduce the high training cost.

There are mainly two challenging issues in continual learning—catastrophic forgetting and loss

118

of plasticity. Addressing them together poses an even greater challenge, known as the stability-
plasticity dilemma. This thesis mainly focused on mitigating the forgetting issue. However, achiev-
ing zero forgetting under limited resources and infinite incoming information is very likely impossible.
In fact, completely avoiding forgetting typically requires a continual learning algorithm to solve an
NP-hard problem (Knoblauch et al. 2020). Thus, under the setting of limited resources, a more
practical goal should be aiming to achieving mild forgetting (Property 2.3). However, even with a
lower bar—using deep neural networks and gradient descent algorithms—it still appears impossi-
ble to achieve this goal in a continual learning setting. Some form of memory-augmented networks
or external memory modules might be necessary. Ultimately, we would need a memory system
capable of flexibly and efficiently supporting retrieving, adding, updating, deleting, and transferring

information between agents.

Compared with catastrophic forgetting, loss of plasticity is relatively easier to solve, even under
limited resources. Specifically, it refers to the phenomenon of a neural network becoming less capa-
ble of learning new information over time, especially after long-time training. While catastrophic
forgetting leads to the loss of already learned old knowledge in neural networks, loss of plasticity
prevents neural networks from learning new knowledge in the first place. In RL, as training pro-
ceeds, inactive neurons increase due to non-stationary targets (Sokar et al. 2023), which reduces
neural network expressivity and limits learning performance. Loss of plasticity also makes agents
prone to overfit to early experiences, resulting in a slow learning process and poor learning per-
formance in subsequent training (Igl et al. 2021, Nikishin et al. 2022). One effective approach to
maintaining network plasticity is injecting randomness into the parameters during training (Ash
and Adams 2020, Igl et al. 2021, Dohare et al. 2021, Nikishin et al. 2022, D’Oro et al. 2023, Sokar
et al. 2023, Dohare et al. 2024, Elsayed and Mahmood 2024). Adding regularization (Kumar et al.
2025, Lewandowski et al. 2023, Elsayed et al. 2024, Chung et al. 2024, Lewandowski et al. 2025)
could also help maintaining plasticity significantly. However, most of these methods have only been
evaluated on small-scale neural networks. Their effectiveness remains to be verified on large-scale

architectures, such as large transformers and diffusion models.

Finally, in this thesis, we proposed a meta-learning approach to learn an optimizer for RL. A

119

more ambitious goal would be to meta-learn the entire learning process—including, but not limited
to, the activation function, network architecture, loss function, optimizer, exploration strategy, and
policy parameterization. With sufficient computational resources and data, this approach could

potentially lead to the development of a strong continual learning agent.

120

References

Abbasi, A., Pirsiavash, H., Nooralinejad, P., Braverman, V., and Kolouri, S. (2022). Sparsity and
heterogeneous dropout for continual learning in the null space of neural activations. In Conference

on Lifelong Learning Agents. (p. 63.)

Achiam, J. (2018). Spinning up in deep reinforcement learning. https://github.com/openai/

spinningup. (p. 113.)

Afsar, M. M., Crump, T., and Far, B. (2022). Reinforcement learning based recommender systems:

A survey. ACM Computing Surveys. (p. 100.)

Aitchison, M., Sweetser, P., and Hutter, M. (2023). Atari-5: Distilling the arcade learning environ-

ment down to five games. In International Conference on Machine Learning. (pp. 51 and 70.)

Aljundi, R., Chakravarty, P., and Tuytelaars, T. (2017). Expert gate: Lifelong learning with a
network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. (pp. 34 and 62.)

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019a). Gradient based sample selection for

online continual learning. Advances in neural information processing systems. (p. 34.)

Aljundi, R., Rohrbach, M., and Tuytelaars, T. (2019b). Selfless sequential learning. In International

Conference on Learning Representations. (p. 34.)

Alt, B., Sosi¢, A., and Koeppl, H. (2019). Correlation priors for reinforcement learning. Advances

in Neural Information Processing Systems. (pp. 29 and 82.)

121

https://github.com/openai/spinningup
https://github.com/openai/spinningup

Ammar, H. B., Eaton, E., Ruvolo, P., and Taylor, M. (2014). Online multi-task learning for policy

gradient methods. In International Conference on Machine Learning. (pp. 34 and 62.)

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B.,
and De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. Advances

in Neural Information Processing Systems. (pp. 27, 81, 85, 91, and 94.)

Ash, J. and Adams, R. P. (2020). On warm-starting neural network training. Advances in neural

information processing systems. (p. 119.)

Atkinson, C., McCane, B., Szymanski, L., and Robins, A. (2021). Pseudo-rehearsal: Achieving deep

reinforcement learning without catastrophic forgetting. Neurocomputing. (pp. 2, 24, and 35.)

Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? Advances in Neural Information

Processing Systems. (p. 27.)

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. In NIPS 2016 Deep Learning

Symposium. (p. 64.)

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., and Blundell,
C. (2020). Agent57: Outperforming the atari human benchmark. In International Conference on

Machine Learning. (pp. 1 and 100.)

Bagheri, S., Thill, M., Koch, P., and Konen, W. (2014). Online adaptable learning rates for the

game connect-4. [EEE Transactions on Computational Intelligence and Al in Games. (p. 28.)

Banerjee, A., Cisneros-Velarde, P., Zhu, L., and Belkin, M. (2023). Neural tangent kernel at initial-

ization: linear width suffices. In Uncertainty in Artificial Intelligence. (p. 25.)

Bechtle, S., Molchanov, A., Chebotar, Y., Grefenstette, E., Righetti, L., Sukhatme, G., and Meier,
F. (2021). Meta learning via learned loss. In 2020 25th International Conference on Pattern

Recognition (ICPR). (pp. 27 and 28.)

Belfer, Y., Geifman, A., Galun, M., and Basri, R. (2024). Spectral analysis of the neural tangent

kernel for deep residual networks. Journal of Machine Learning Research. (p. 25.)

122

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:

An evaluation platform for general agents. Journal of Artificial Intelligence Research. (pp. 51

and 70.)

Bengio, E., Pineau, J., and Precup, D. (2020a). Correcting momentum in temporal difference

learning. NeurIPS Workshop on Deep RL. (pp. 82 and 85.)

Bengio, E., Pineau, J., and Precup, D. (2020b). Interference and generalization in temporal differ-

ence learning. In International Conference on Machine Learning. (p. 82.)

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q.,
Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv

preprint arXiv:1912.06680. (pp. 1 and 100.)

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J. (2020). What is the state of neural

network pruning? Proceedings of machine learning and systems. (p. 63.)

Boullé, N., Nakatsukasa, Y., and Townsend, A. (2020). Rational neural networks. Advances in

Neural Information Processing Systems. (p. 91.)

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable

transformations of Python+NumPy programs. (pp. 69, 84, and 92.)

Bricken, T., Davies, X., Singh, D., Krotov, D., and Kreiman, G. (2023). Sparse distributed memory

is a continual learner. In International Conference on Learning Representations. (p. 62.)

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). OpenAl Gym. arXiv preprint arXiv:1606.01540. (pp. 45, 108, and 113.)

Bucilua, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In International

Conference on Knowledge Discovery and Data Mining. (p. 27.)

123

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2020a). Once-for-all: Train one network and

specialize it for efficient deployment. In International Conference on Learning Representations.

(p. 27.)

Cai, Q., Pan, L., and Tang, P. (2020b). Deterministic value-policy gradients. In Proceedings of the
AAAI Conference on Artificial Intelligence. (pp. 16, 100, 101, and 104.)

Carvalho, J., Tateo, D., Muratore, F., and Peters, J. (2021). An empirical analysis of measure-valued
derivatives for policy gradients. In 2021 International Joint Conference on Neural Networks. (p.

10.)

Ceron, J. S. O., Courville, A., and Castro, P. S. (2024). In value-based deep reinforcement learning,

a pruned network is a good network. In International Conference on Machine Learning. (p. 63.)

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., and Ranzato,

M. (2019). On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486.

(p. 34.)

Chen, L., Lee, K., Srinivas, A., and Abbeel, P. (2021). Improving computational efficiency in
visual reinforcement learning via stored embeddings. Advances in Neural Information Processing

Systems. (p. 117.)

Chen, S., He, H., and Su, W. (2020). Label-aware neural tangent kernel: Toward better generaliza-

tion and local elasticity. Advances in Neural Information Processing Systems. (pp. 25 and 63.)

Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T. P., Botvinick, M., and de
Freitas, N. (2017). Learning to learn without gradient descent by gradient descent. International

Conference on Machine Learning. (p. 81.)

Chizat, L., Oyallon, E., and Bach, F. (2019). On lazy training in differentiable programming.

Advances in neural information processing systems. (p. 66.)

Cho, K., van Merriénboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural

124

machine translation: Encoder—decoder approaches. In Proceedings of SSST-8, Fighth Workshop

on Syntax, Semantics and Structure in Statistical Translation. (p. 93.)

Choi, Y., El-Khamy, M., and Lee, J. (2021). Dual-teacher class-incremental learning with data-free
generative replay. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. (p. 34.)

Chung, W., Cherif, L., Precup, D., and Meger, D. (2024). Parseval regularization for continual

reinforcement learning. Advances in Neural Information Processing Systems. (p. 119.)

Cobbe, K. W., Hilton, J., Klimov, O., and Schulman, J. (2021). Phasic policy gradient. In Inter-

national Conference on Machine Learning. (p. 115.)

Conti, E., Madhavan, V., Such, F. P.; Lehman, J., Stanley, K. O., and Clune, J. (2018). Improving
exploration in evolution strategies for deep reinforcement learning via a population of novelty-

seeking agents. In Advances in Neural Information Processing Systems. (p. 10.)
Cooper, C. (2000). On the rank of random matrices. Random Structures €& Algorithms. (p. 38.)

Dabney, W., Barreto, A., Rowland, M., Dadashi, R., Quan, J., Bellemare, M. G., and Silver, D.
(2021). The value-improvement path: Towards better representations for reinforcement learning.

In Proceedings of the AAAI Conference on Artificial Intelligence. (p. 68.)

Daniel, C., Taylor, J., and Nowozin, S. (2016). Learning step size controllers for robust neural

network training. In Proceedings of the AAAI Conference on Artificial Intelligence. (p. 28.)

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification tasks.

IEEFE Transactions on Pattern Analysis and Machine Intelligence. (pp. 2, 24, and 33.)

Deng, L. (2012). The MNIST database of handwritten digit images for machine learning research.
IEEFE Signal Processing Magazine. (p. 88.)

Dettmers, T. and Zettlemoyer, L. (2019). Sparse networks from scratch: Faster training without

losing performance. arXiv preprint arXiv:1907.04840. (p. 63.)

125

Doan, T., Bennani, M. A., Mazoure, B., Rabusseau, G., and Alquier, P. (2021). A theoretical
analysis of catastrophic forgetting through the ntk overlap matrix. In International Conference

on Artificial Intelligence and Statistics. (pp. 24 and 25.)

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P., Mahmood, A. R., and Sutton, R. S.

(2024). Loss of plasticity in deep continual learning. Nature. (pp. 1 and 119.)

Dohare, S., Sutton, R. S.; and Mahmood, A. R. (2021). Continual backprop: Stochastic gradient

descent with persistent randomness. arXiv preprint arXiv:2108.06325. (p. 119.)

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Bellemare, M. G., and Courville, A. (2023).
Sample-efficient reinforcement learning by breaking the replay ratio barrier. In International

Conference on Learning Representations. (p. 119.)

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, 1., and Abbeel, P. (2016). RL?: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779. (p.

28.)

Elsayed, M., Lan, Q., Lyle, C., and Mahmood, A. R. (2024). Weight clipping for deep continual

and reinforcement learning. In Reinforcement Learning Conference. (p. 119.)

Elsayed, M. and Mahmood, A. R. (2024). Addressing loss of plasticity and catastrophic forgetting

in continual learning. In International Conference on Learning Representations. (p. 119.)

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V.,
Harley, T., Dunning, I., et al. (2018). Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International Conference on Machine Learning. (p.

115.)

Farajtabar, M., Azizan, N., Mott, A., and Li, A. (2020). Orthogonal gradient descent for continual

learning. In International Conference on Artificial Intelligence and Statistics. (pp. 34 and 54.)

Farquhar, S. and Gal, Y. (2018). Towards robust evaluations of continual learning. arXiv preprint

arXiv:1805.09733. (pp. 2, 24, and 33.)

126

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., and Wierstra,
D. (2017). PathNet: Evolution channels gradient descent in super neural networks. arXiv preprint

arXiv:1701.08734. (pp. 34 and 62.)

Finn, C., Abbeel, P., and Levine, S. (2017a). Model-agnostic meta-learning for fast adaptation of

deep networks. In International Conference on Machine Learning. (p. 27.)

Finn, C., Yu, T., Zhang, T., Abbeel, P., and Levine, S. (2017b). One-shot visual imitation learning

via meta-learning. In Conference on robot learning. (p. 27.)

Fort, S., Nowak, P. K., Jastrzebski, S., and Narayanan, S. (2020). Stiffness: A new perspective on

generalization in neural networks. arXiv preprint arXiv:1901.09491. (p. 74.)

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A., Mnih, V.,
Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and Legg, S. (2018). Noisy networks for

exploration. In International Conference on Learning Representations. (p. 71.)

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil, M. (2018). Bilevel programming
for hyperparameter optimization and meta-learning. In International Conference on Machine

Learning. (p. 27.)

Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural

networks. In International Conference on Learning Representations. (p. 63.)

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., and Bachem, O. (2021). Brax - a

differentiable physics engine for large scale rigid body simulation. (p. 92.)

French, R. M. (1992). Semi-distributed representations and catastrophic forgetting in connectionist

networks. Connection Science. (p. 63.)

French, R. M. (1999). Catastrophic forgetting in connectionist networks. 7Trends in cognitive sci-

ences. (pp. 2 and 24.)

Gal, Y. (2016). Uncertainty in deep learning. PhD thesis, University of Cambridge. (p. 15.)

127

Ghiassian, S., Rafiee, B., Lo, Y. L., and White, A. (2020). Improving performance in reinforcement
learning by breaking generalization in neural networks. In Proceedings of the 19th International

Conference on Autonomous Agents and MultiAgent Systems. (pp. 2, 29, and 66.)

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communications

of the ACM. (p. 11.)

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing

systems. (p. 117.)

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout networks.

In International Conference on Machine Learning. (pp. 62, 63, and 69.)

Grathwohl, W.; Choi, D., Wu, Y., Roeder, G., and Duvenaud, D. (2018). Backpropagation through
the void: Optimizing control variates for black-box gradient estimation. In International Confer-

ence on Learning Representations. (p. 16.)

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques for gradient

estimates in reinforcement learning. Journal of Machine Learning Research. (p. 14.)

Guo, Y., Yao, A., and Chen, Y. (2016). Dynamic network surgery for efficient DNNs. Advances in

neural information processing systems. (p. 63.)

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine, S. (2018). Meta-reinforcement learning
of structured exploration strategies. Advances in Neural Information Processing Systems. (p.

28.)

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In Advances

in Neural Information Processing Systems. (p. 29.)

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,
A., Abbeel, P.; et al. (2018). Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905. (pp. 1, 16, 21, 29, 30, 100, and 115.)

128

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2019). Dream to control: Learning behaviors by

latent imagination. In International Conference on Learning Representations. (pp. 100 and 101.)

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In International Conference on Learning

Representations. (p. 27.)

Harrison, J., Metz, L., and Sohl-Dickstein, J. (2022). A closer look at learned optimization: Stability,
robustness, and inductive biases. In Advances in Neural Information Processing Systems. (pp.

85, 88, 90, and 94.)

Hayes, T. L., Cahill, N. D., and Kanan, C. (2019). Memory efficient experience replay for streaming

learning. In International Conference on Robotics and Automation. (pp. 1, 30, 34, and 117.)

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., and Kanan, C. (2020). Remind your neural
network to prevent catastrophic forgetting. In Furopean Conference on Computer Vision. (p.

117.)

Hayes, T. L. and Kanan, C. (2022). Online continual learning for embedded devices. In Conference

on Lifelong Learning Agents. (pp. 1 and 30.)

He, H. and Su, W. (2020). The local elasticity of neural networks. In International Conference on

Learning Representations. (pp. 24 and 63.)

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and Tassa, Y. (2015). Learning continuous
control policies by stochastic value gradients. In Advances in Neural Information Processing

Systems. (pp. 16, 29, 100, 101, and 104.)

Henderson, P., Romoff, J., and Pineau, J. (2018). Where did my optimum go?: An empirical analysis
of gradient descent optimization in policy gradient methods. In The 14th Furopean Workshop on

Reinforcement Learning. (p. 84.)

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,

129

B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence. (p. 69.)

Hinton, G., Vinyals, O., and Dean, J. (2014). Distilling the knowledge in a neural network. In NIPS

Deep Learning Workshop. (pp. 26, 34, and 35.)
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation. (p. 85.)

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational inference.

Journal of Machine Learning Research. (p. 10.)

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2021). Meta-learning in neural networks:

A survey. IEEE transactions on pattern analysis and machine intelligence. (p. 27.)

Houthooft, R., Chen, Y., Isola, P., Stadie, B., Wolski, F., Jonathan Ho, O., and Abbeel, P. (2018).

Evolved policy gradients. Advances in Neural Information Processing Systems. (pp. 27 and 28.)

Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., and Kira, Z. (2018). Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488. (pp.

2 and 24.)

Huang, J. and Yau, H.-T. (2020). Dynamics of deep neural networks and neural tangent hierarchy.

In International Conference on Machine Learning. (p. 25.)

Huang, K., Wang, Y., Tao, M., and Zhao, T. (2020). Why do deep residual networks generalize
better than deep feedforward networks?—a neural tangent kernel perspective. Advances in neural

information processing systems. (p. 25.)

Huang, M., You, Y., Chen, Z., Qian, Y., and Yu, K. (2018). Knowledge distillation for sequence

model. In Interspeech. (p. 27.)

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2018). Quantized neu-
ral networks: Training neural networks with low precision weights and activations. Journal of

Machine Learning Research. (p. 27.)

130

Hung, C.-Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-M., and Chen, C.-S. (2019). Compact-
ing, picking and growing for unforgetting continual learning. Advances in Neural Information

Processing Systems. (p. 62.)

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., and Hutter, M. (2019).

Learning agile and dynamic motor skills for legged robots. Science Robotics. (p. 1.)

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and Whiteson, S. (2021). Transient non-
stationarity and generalisation in deep reinforcement learning. In International Conference on

Learning Representations. (pp. 1 and 119.)

Imani, E., Graves, E., and White, M. (2018). An off-policy policy gradient theorem using emphatic

weightings. Advances in Neural Information Processing Systems. (pp. 11 and 102.)

Isele, D. and Cosgun, A. (2018). Selective experience replay for lifelong learning. In Proceedings of

the AAAI Conference on Artificial Intelligence. (p. 34.)

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural

Networks. (pp. 28 and 85.)

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and generaliza-

tion in neural networks. Advances in neural information processing systems. (pp. 25 and 66.)

Jafferjee, T., Imani, E., Talvitie, E., White, M., and Bowling, M. (2020). Hallucinating value: A pit-
fall of Dyna-style planning with imperfect environment models. arXiv preprint arXiv:2006.043635.
(pp. 100 and 102.)

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with Gumbel-Softmax. In

International Conference on Learning Representations. (pp. 15 and 118.)

Javed, K. and White, M. (2019). Meta-learning representations for continual learning. Advances in

neural information processing systems. (p. 27.)

Jin, X., Sadhu, A., Du, J., and Ren, X. (2020). Gradient based memory editing for task-free
continual learning. In 4th Lifelong Machine Learning Workshop at ICML 2020. (p. 34.)

131

Jung, D., Lee, D., Hong, S., Jang, H., Bae, H., and Yoon, S. (2023). New insights for the stability-
plasticity dilemma in online continual learning. In International Conference on Learning Repre-

sentations. (p. 64.)

Kamra, N., Gupta, U., and Liu, Y. (2017). Deep generative dual memory network for continual

learning. arXiv preprint arXiv:1710.10368. (pp. 34 and 35.)

Kaplanis, C., Shanahan, M., and Clopath, C. (2019). Policy consolidation for continual reinforce-

ment learning. In International Conference on Machine Learning. (p. 35.)

Kemker, R., McClure, M., Abitino, A., Hayes, T., and Kanan, C. (2018). Measuring catastrophic

forgetting in neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence.

(p. 33.)

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. (2022). Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research. (pp. 2, 24, 33,
34, and 87.)

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In International

Conference on Learning Representations. (pp. 65, 71, 86, 90, and 91.)

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1812.6114. (pp. 10, 16, and 117.)

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic forgetting

in neural networks. Proceedings of the national academy of sciences. (pp. 34 and 35.)

Kirsch, L., Flennerhag, S., van Hasselt, H., Friesen, A., Oh, J., and Chen, Y. (2022). Introducing
symmetries to black box meta reinforcement learning. In Proceedings of the AAAI Conference on

Artificial Intelligence. (p. 28.)

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. (2020). Improving generalization in meta

132

reinforcement learning using learned objectives. In International Conference on Learning Repre-

sentations. (pp. 27 and 28.)

Knoblauch, J., Husain, H., and Diethe, T. (2020). Optimal continual learning has perfect memory

and is np-hard. In International Conference on Machine Learning. (p. 119.)

Kumar, S., Marklund, H., and Van Roy, B. (2025). Maintaining plasticity in continual learning via

regenerative regularization. In Conference on Lifelong Learning Agents. (p. 119.)

Lai, K.-H., Zha, D., Li, Y., and Hu, X. (2020). Dual policy distillation. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences on Artificial Intelligence. (p.

27.)

Lan, Q. (2019). A pytorch reinforcement learning framework for exploring new ideas. https:

//github.com/qlan3/Explorer. (p. 69.)

Lan, Q. and Mahmood, A. R. (2023). Elephant neural networks: Born to be a continual learner.

ICML Workshop on High-dimensional Learning Dynamics. (p. iii.)

Lan, Q., Mahmood, A. R., YAN, S., and Xu, Z. (2024). Learning to optimize for reinforcement

learning. Reinforcement Learning Journal. (p. iii.)

Lan, Q., Pan, Y., Fyshe, A., and White, M. (2020). Maxmin Q-learning: Controlling the estimation

bias of g-learning. In International Conference on Learning Representations. (p. 45.)

Lan, Q., Pan, Y., Luo, J., and Mahmood, A. R. (2023). Memory-efficient reinforcement learning
with value-based knowledge consolidation. Transactions on Machine Learning Research. (pp. iii

and 1.)

Lan, Q., Tosatto, S., Farrahi, H., and Mahmood, R. (2022). Model-free policy learning with reward

gradients. In International Conference on Artificial Intelligence and Statistics. (p. iii.)

Le, L., Kumaraswamy, R., and White, M. (2017). Learning sparse representations in reinforcement

learning with sparse coding. International Joint Conferences on Artificial Intelligence. (p. 63.)

133

https://github.com/qlan3/Explorer
https://github.com/qlan3/Explorer

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature. (pp. 21 and 81.)

L’ecuyer, P. (1990). A unified view of the ipa, sf, and Ir gradient estimation techniques. Management

Science. (p. 10.)

Lee, J., Kim, S., Kim, S., Jo, W., and Yoo, H.-J. (2021). GST: Group-sparse training for accelerating

deep reinforcement learning. arXiv preprint arXiv:2101.09650. (p. 63.)

Lewandowski, A., , Kumar, S., Schuurmans, D., Gyorgy, A., and Machado, M. C. (2025). Learning

continually by spectral regularization. In International Conference on Learning Representations.

(p. 119.)

Lewandowski, A., Tanaka, H., Schuurmans, D., and Machado, M. C. (2023). Directions of curvature

as an explanation for loss of plasticity. arXiv preprint arXiv:2312.00246. (p. 119.)

Li, A. and Pathak, D. (2021). Functional regularization for reinforcement learning via learned

Fourier features. Advances in Neural Information Processing Systems. (p. 64.)

Li, K. and Malik, J. (2017). Learning to optimize. In International Conference on Learning Repre-

sentations. (pp. 28 and 85.)

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. (2019). Learn to grow: A continual struc-
ture learning framework for overcoming catastrophic forgetting. In International Conference on

Machine Learning. (pp. 34 and 62.)

Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-SGD: Learning to learn quickly for few-shot

learning. arXiv preprint arXiv:1707.09835. (p. 27.)

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016a). Continuous control with deep reinforcement learning. In International Conference on

Learning Representations. (pp. 1, 16, and 100.)

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016b). Continuous control with deep reinforcement learning. In International Conference on

Learning Representations. (p. 29.)

134

Lin, G., Chu, H., and Lai, H. (2022). Towards better plasticity-stability trade-off in incremental

learning: A simple linear connector. In Conference on Computer Vision and Pattern Recognition.

(p. 64.)

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine learning. (pp. 22 and 29.)

Liu, H., Simonyan, K., and Yang, Y. (2019a). Darts: Differentiable architecture search. In Inter-

national Conference on Learning Representations. (p. 27.)

Liu, J., Xu, Z., Shi, R., Cheung, R. C. C., and So, H. K. (2020). Dynamic sparse training: Find
efficient sparse network from scratch with trainable masked layers. In International Conference

on Learning Representations. (p. 63.)

Liu, V., Kumaraswamy, R., Le, L., and White, M. (2019b). The utility of sparse representations for
control in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence.

(pp. 56, 63, 65, and 66.)

Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory for continual learning. Advances

in neural information processing systems. (p. 34.)

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt, C., and Foerster, J. (2022). Discovered

policy optimisation. Advances in Neural Information Processing Systems. (pp. 28 and 93.)

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. (2021). Learning nonlinear operators
via DeepONet based on the universal approximation theorem of operators. Nature Machine

Intelligence. (p. 91.)

Lucas, J., Sun, S., Zemel, R., and Grosse, R. (2019). Aggregated momentum: Stability through

passive damping. In International Conference on Learning Representations. (pp. 86 and 90.)

Lyle, C., Rowland, M., and Dabney, W. (2021). Understanding and preventing capacity loss in

reinforcement learning. In International Conference on Learning Representations. (pp. 1 and 88.)

135

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu, R., and Dabney, W. (2023). Understanding

plasticity in neural networks. In International Conference on Machine Learning. (pp. 64 and 74.)

Ma, X., Zhu, J., Lin, Z., Chen, S., and Qin, Y. (2022). A state-of-the-art survey on solving non-iid

data in federated learning. Future Generation Computer Systems. (p. 87.)

Madireddy, S., Yanguas-Gil, A., and Balaprakash, P. (2023). Improving performance in continual
learning tasks using bio-inspired architectures. In Conference on Lifelong Learning Agents. (p.

62.)

Maheswaranathan, N., Sussillo, D., Metz, L., Sun, R., and Sohl-Dickstein, J. (2021). Reverse engi-
neering learned optimizers reveals known and novel mechanisms. Advances in Neural Information

Processing Systems. (p. 81.)

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski, P. M. (2012). Tuning-free step-size
adaptation. In 2012 IEEFE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). (p. 85.)

Mallya, A. and Lazebnik, S. (2018). PackNet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.

(pp. 34 and 62.)

Masana, M., Tuytelaars, T., and Van de Weijer, J. (2021). Ternary feature masks: zero-forgetting
for task-incremental learning. In Proceedings of the IEEE/CVE Conference on Computer Vision

and Pattern Recognition. (pp. 34 and 62.)

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The

sequential learning problem. In Psychology of learning and motivation. (pp. 2 and 24.)
Medsker, L. R. and Jain, L. (2001). Recurrent neural networks. Design and Applications. (p. 85.)

Mehta, H., Cutkosky, A., and Neyshabur, B. (2021). Extreme memorization via scale of initializa-

tion. In International Conference on Learning Representations. (p. 63.)

136

Mendez, J., Wang, B., and Eaton, E. (2020). Lifelong policy gradient learning of factored policies
for faster training without forgetting. Advances in Neural Information Processing Systems. (pp.

34, 54, and 62.)

Mendez, J. A., van Seijen, H., and Eaton, E. (2022). Modular lifelong reinforcement learning via

neural composition. In International Conference on Learning Representations. (pp. 34 and 54.)

Mermillod, M., Bugaiska, A., and BONIN, P. (2013). The stability-plasticity dilemma: investi-
gating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in

Psychology. (p. 64.)

Metz, L., Freeman, C. D., Harrison, J., Maheswaranathan, N., and Sohl-Dickstein, J. (2022a). Prac-
tical tradeoffs between memory, compute, and performance in learned optimizers. In Conference

on Lifelong Learning Agents. (p. 85.)

Metz, L., Harrison, J., Freeman, C. D., Merchant, A., Beyer, L., Bradbury, J., Agrawal, N., Poole,
B., Mordatch, I., Roberts, A., et al. (2022b). VeLO: Training versatile learned optimizers by

scaling up. arXiv preprint arXiv:2211.09760. (pp. 82, 86, 87, 94, and 96.)

Metz, L., Maheswaranathan, N., Freeman, C. D., Poole, B., and Sohl-Dickstein, J. (2020a). Tasks,
stability, architecture, and compute: Training more effective learned optimizers, and using them

to train themselves. arXiv preprint arXiv:2009.11243. (pp. 86, 87, and 88.)

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., and Sohl-Dickstein, J. (2019). Understand-
ing and correcting pathologies in the training of learned optimizers. In International Conference

on Machine Learning. (pp. 85 and 87.)

Metz, L., Maheswaranathan, N., Sun, R., Freeman, C. D., Poole, B., and Sohl-Dickstein, J. (2020b).
Using a thousand optimization tasks to learn hyperparameter search strategies. arXiv preprint

arXiw:2002.11887. (p. 82.)

Mirzadeh, S. I., Chaudhry, A., Yin, D., Hu, H., Pascanu, R., Gorur, D., and Farajtabar, M. (2022a).
Wide neural networks forget less catastrophically. In International Conference on Machine Learn-

ing. (pp. 54 and 62.)

137

Mirzadeh, S. I., Chaudhry, A., Yin, D., Nguyen, T., Pascanu, R., Gorur, D., and Farajtabar, M.
(2022b). Architecture matters in continual learning. arXiv preprint arXiv:2202.00275. (pp. 54

and 62.)

Mirzadeh, S. I., Farajtabar, M., and Ghasemzadeh, H. (2020). Dropout as an implicit gating
mechanism for continual learning. In Proceedings of the IEEE/CVFE Conference on Computer

Vision and Pattern Recognition Workshops. (p. 63.)

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu,
K. (2016). Asynchronous methods for deep reinforcement learning. In International Conference

on Machine Learning. (pp. 15, 87, 92, and 115.)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., and Antonoglou, I. (2013). Playing Atari with

deep reinforcement learning. In NIPS Deep Learning Workshop. (pp. 29, 55, and 69.)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control

through deep reinforcement learning. Nature. (pp. 1, 21, 29, 30, and 69.)

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte Carlo gradient estimation in

machine learning. Journal of Machine Learning Research. (pp. 10, 15, and 16.)

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. G. (2016). Safe and efficient off-
policy reinforcement learning. In Proceedings of the 30th International Conference on Neural

Information Processing Systems. (p. 115.)

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel, P., Levine, S., and Finn, C. (2019).
Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In

International Conference on Learning Representations. (p. 28.)

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and Courville, A. (2022). The primacy bias

in deep reinforcement learning. In International Conference on Machine Learning. (p. 119.)

138

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H. P., Singh, S., and Silver, D. (2020).
Discovering reinforcement learning algorithms. Advances in Neural Information Processing Sys-

tems. (pp. 27, 28, and 92.)

Osband, 1., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKinney, K., Latti-
more, T., Szepesvari, C., Singh, S., et al. (2020). Behaviour suite for reinforcement learning. In

International Conference on Learning Representations. (p. 92.)

Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., and Nabi, M. (2019). Learning to remember:
A synaptic plasticity driven framework for continual learning. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. (p. 62.)

Pan, Y., Banman, K., and White, M. (2022a). Fuzzy tiling activations: A simple approach to
learning sparse representations online. In International Conference on Learning Representations.

(pp. 2, 29, 62, 69, 70, and 71.)

Pan, Y., Mei, J., and massoud Farahmand, A. (2020). Frequency-based search-control in dyna. In

International Conference on Learning Representations. (p. 117.)

Pan, Y., Mei, J., massoud Farahmand, A., White, M., Yao, H., Rohani, M., and Luo, J. (2022b).
Understanding and mitigating the limitations of prioritized experience replay. In Conference on

Uncertainty in Artificial Intelligence. (p. 117.)

Parmas, P., Rasmussen, C. E., Peters, J., and Doya, K. (2018). PIPPS: Flexible model-based policy

search robust to the curse of chaos. In International Conference on Machine Learning. (p. 15.)

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural

networks. (p. 107.)
Pflug, G. C. (1989). Sampling derivatives of probabilities. Computing. (p. 10.)

Ramapuram, J., Gregorova, M., and Kalousis, A. (2020). Lifelong generative modeling. Neurocom-

puting. (p. 34.)

139

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). iCaRL: Incremental classifier
and representation learning. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition. (p. 33.)

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31st International Conference on

International Conference on Machine Learning. (p. 16.)

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and Tesauro, G. (2018). Learning
to learn without forgetting by maximizing transfer and minimizing interference. In International

Conference on Learning Representations. (pp. 33, 34, and 54.)

Riemer, M., Cases, 1., Ajemian, R., Liu, M., Rish, I., Tu, Y., and Tesauro, G. (2019). Learning
to learn without forgetting by maximizing transfer and minimizing interference. In International

Conference on Learning Representations. (p. 25.)

Ring, M. B. (1994). Continual learning in reinforcement environments. The University of Texas at

Austin. (p. 1.)

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience replay for

continual learning. Advances in Neural Information Processing Systems. (p. 35.)

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., Mnih,
V., Kavukcuoglu, K., and Hadsell, R. (2015). Policy distillation. arXiv preprint arXiv:1511.06295.

(p. 27.)

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pas-
canu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.
(pp. 34 and 62.)

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. In 5th Workshop on Energy Efficient Machine Learning and
Cognitive Computing at NeurIPS 2019. (p. 27.)

140

Sarfraz, F., Arani, E., and Zonooz, B. (2023). Sparse coding in a dual memory system for lifelong

learning. In Proceedings of the AAAI Conference on Artificial Intelligence. (p. 63.)

Sarigiil, M. and Avci, M. (2018). Performance comparison of different momentum techniques on

deep reinforcement learning. Journal of Information and Telecommunication. (p. 84.)

Schlegel, M., Pan, Y., Chen, J., and White, M. (2017). Adapting kernel representations online using

submodular maximization. In International Conference on Machine Learning. (p. 117.)

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. PhD thesis, Technical

University of Munich. (pp. 27 and 28.)

Schraudolph, N. and Sejnowski, T. J. (1995). Tempering backpropagation networks: Not all weights

are created equal. Advances in Neural Information Processing Systems. (p. 28.)

Schraudolph, N. N. (1998). Online local gain adaptation for multi-layer perceptrons. Technical
Report, IDSIA-09-98, IDSIA. (p. 28.)

Schraudolph, N. N. (1999). Local gain adaptation in stochastic gradient descent. International

Conference on Artificial Neural Networks. (p. 28.)

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent.

Neural computation. (p. 28.)

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lock-
hart, E., Hassabis, D., Graepel, T., et al. (2020). Mastering Atari, Go, chess and shogi by planning

with a learned model. Nature. (pp. 1 and 29.)

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy

optimization. In International Conference on Machine Learning. (pp. 15, 29, and 101.)

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-dimensional contin-
uous control using generalized advantage estimation. In International Conference on Learning

Representations. (pp. 2, 14, 22, 84, and 107.)

141

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347. (pp. 15, 22, 29, 92, and 101.)

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R., and
Hadsell, R. (2018). Progress & compress: A scalable framework for continual learning. In Inter-

national Conference on Machine Learning. (pp. 2, 24, and 34.)

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catastrophic forgetting
with hard attention to the task. In International Conference on Machine Learning. (pp. 34

and 62.)

Shazeer, N. and Stern, M. (2018). Adafactor: Adaptive learning rates with sublinear memory cost.

In International Conference on Machine Learning. (p. 91.)

Shen, Y., Dasgupta, S., and Navlakha, S. (2021). Algorithmic insights on continual learning from
fruit flies. arXiv preprint arXiw:2107.07617. (pp. 56 and 62.)

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative replay.

Advances in neural information processing systems. (pp. 34 and 35.)

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic

policy gradient algorithms. In International Conference on Machine Learning. (pp. 16 and 17.)

Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces.

Machine learning. (p. 14.)

Smith, L., Kostrikov, 1., and Levine, S. (2023). Demonstrating a walk in the park: Learning to
walk in 20 minutes with model-free reinforcement learning. Robotics: Science and Systems (RSS)

Demo. (p. 30.)

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. (2023). The dormant neuron phenomenon in

deep reinforcement learning. In International Conference on Machine Learning. (p. 119.)

Sokar, G., Mocanu, D. C., and Pechenizkiy, M. (2021). SpaceNet: Make free space for continual

learning. Neurocomputing. (pp. 34, 62, and 63.)

142

Sokar, G., Mocanu, E., Mocanu, D. C., Pechenizkiy, M., and Stone, P. (2022). Dynamic sparse train-

ing for deep reinforcement learning. In International Joint Conference on Artificial Intelligence.

(p. 63.)

Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., and Tang, Y. (2020). ES-MAML:
Simple hessian-free meta learning. In International Conference on Learning Representations. (p.

28.)

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., and Schmidhuber, J. (2013). Compete to

compute. Advances in neural information processing systems. (pp. 63 and 69.)

Sun, Y. and Fazli, P. (2019). Real-time policy distillation in deep reinforcement learning. arXiv

preprint arXiv:1912.12630. (p. 27.)

Sutton, R. (1992a). Adapting bias by gradient descent: An incremental version of delta-bar-delta.
In Proceedings of the AAAI Conference on Artificial Intelligence. (pp. 27, 28, 81, and 85.)

Sutton, R. S. (1992b). Gain adaptation beats least squares. In Proceedings of the 7th Yale workshop

on adaptive and learning systems. (p. 28.)

Sutton, R. S. (2022). A history of meta-gradient: Gradient methods for meta-learning. arXiv
preprint arXiv:2202.09701. (p. 28.)

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press,

second edition. (pp. 6, 11, 22, 32, 43, 63, and 107.)

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information processing

systems. (pp. 102, 103, and 107.)

Tan, Y., Hu, P., Pan, L., Huang, J., and Huang, L. (2023). RLx2: Training a sparse deep reinforce-
ment learning model from scratch. In International Conference on Learning Representations. (p.

63.)

143

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. (2019). Distilling task-specific

knowledge from BERT into simple neural networks. arXiv preprint arXiv:1903.12136. (p. 27.)

Tasfi, N. (2016). PyGame learning environment. https://github.com/ntasfi/PyGame-Learning-

Environment. (pp. 45 and 69.)

Telgarsky, M. (2017). Neural networks and rational functions. In International Conference on

Machine Learning. (p. 91.)

Thrun, S. and Pratt, L. (1998). Learning to learn: Introduction and overview. In Learning to learn.

(p. 27.)

Tian, Y., Krishnan, D., and Isola, P. (2020). Contrastive representation distillation. In International

Conference on Learning Representations. (p. 27.)

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-RMSProp: Divide the gradient by a running
average of its recent magnitude. COURSERA Neural Networks Neural Networks for Machine
Learning. (pp. 70, 83, 87, and 91.)

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. (2020). Functional
regularisation for continual learning with gaussian processes. In International Conference on

Learning Representations. (p. 35.)

Todorov, E. (2014). Convex and analytically-invertible dynamics with contacts and constraints:
Theory and implementation in MuJoCo. In 2014 IEEFE International Conference on Robotics and
Automation (ICRA). (p. 113.)

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. In

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. (pp. 92 and 108.)

Tosatto, S., Carvalho, J., and Peters, J. (2021). Batch reinforcement learning with a nonparametric
off-policy policy gradient. IEEE Transactions on Pattern Analysis and Machine Intelligence. (p.
110.)

144

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. d., Deleu, T., Goulao, M.,
Kallinteris, A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J. J.,
Shen, A. T. J., and Younis, O. G. (2023). Gymnasium. https://zenodo.org/record/8127025.

(pp. 55 and 69.)

Van de Ven, G. M. and Tolias, A. S. (2018). Generative replay with feedback connections as a

general strategy for continual learning. arXiv preprint arXiv:1809.10635. (p. 34.)

Van de Ven, G. M., Tuytelaars, T., and Tolias, A. S. (2022). Three types of incremental learning.

Nature Machine Intelligence. (pp. 2, 24, and 33.)

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Modayil, J. (2018). Deep

reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648. (p. 88.)

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double Q-

learning. In Proceedings of the AAAI Conference on Artificial Intelligence. (p. 29.)

van Hasselt, H. P., Hessel, M., and Aslanides, J. (2019). When to use parametric models in rein-

forcement learning? Advances in Neural Information Processing Systems. (pp. 100 and 102.)

Vettoruzzo, A., Bouguelia, M.-R., Vanschoren, J., Rognvaldsson, T., and Santosh, K. (2024). Ad-
vances and challenges in meta-learning: A technical review. IEEE transactions on pattern analysis

and machine intelligence. (p. 27.)

Vicol, P., Metz, L., and Sohl-Dickstein, J. (2021). Unbiased gradient estimation in unrolled com-
putation graphs with persistent evolution strategies. In International Conference on Machine

Learning. (p. 85.)

Vilalta, R. and Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial

Intelligence Review. (p. 27.)

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in StarCraft II using

multi-agent reinforcement learning. Nature. (pp. 1 and 100.)

145

https://zenodo.org/record/8127025

Wang, H., Zheng, S., Xiong, C., and Socher, R. (2019). On the generalization gap in reparameteri-

zable reinforcement learning. In International Conference on Machine Learning. (p. 16.)

Wang, L., Zhang, X., Su, H., and Zhu, J. (2024). A comprehensive survey of continual learning:
Theory, method and application. IEEFE transactions on pattern analysis and machine intelligence.

(pp. 2 and 87.)

Wang, Y., Vasan, G., and Mahmood, A. R. (2023). Real-time reinforcement learning for vision-
based robotics utilizing local and remote computers. In International Conference on Robotics and

Automation. (p. 30.)

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N. (2017).
Sample efficient actor-critic with experience replay. In International Conference on Learning

Representations. (p. 15.)

Wang, Z., Zhan, Z., Gong, Y., Yuan, G., Niu, W., Jian, T., Ren, B., Ioannidis, S., Wang, Y., and
Dy, J. (2022). SparCL: Sparse continual learning on the edge. In Advances in Neural Information

Processing Systems. (p. 63.)

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge. (p.
9.)

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang, M., Su, Y., Su, H., and Zhu, J.
(2022). Tianshou: A highly modularized deep reinforcement learning library. Journal of Machine

Learning Research. (pp. 51 and 70.)

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Freitas,
N., and Sohl-Dickstein, J. (2017). Learned optimizers that scale and generalize. In International

Conference on Machine Learning. (pp. 27, 81, 85, 87, and 88.)

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine learning. (pp. 10, 14, and 101.)

146

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J.,
Capobianco, R., Devlic, A., Eckert, F., Fuchs, F., et al. (2022). Outracing champion gran turismo

drivers with deep reinforcement learning. Nature. (p. 1.)

Xu, M., Quiroz, M., Kohn, R., and Sisson, S. A. (2019). Variance reduction properties of the
reparameterization trick. In The 22nd International Conference on Artificial Intelligence and

Statistics. (pp. 16 and 108.)

Xu, Z., van Hasselt, H. P., Hessel, M., Oh, J., Singh, S., and Silver, D. (2020). Meta-gradient
reinforcement learning with an objective discovered online. Advances in Neural Information

Processing Systems. (p. 83.)

Xu, Z., van Hasselt, H. P., and Silver, D. (2018). Meta-gradient reinforcement learning. Advances

in neural information processing systems. (p. 28.)

Yarotsky, D. (2017). Error bounds for approximations with deep ReL.U networks. Neural Networks.

(p- 91.)

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2018). Lifelong learning with dynamically expandable

networks. In International Conference on Learning Representations. (pp. 34 and 62.)

You, S., Xu, C., Xu, C., and Tao, D. (2017). Learning from multiple teacher networks. In Proceedings
of the 28rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

(p. 27.)

Young, K. and Tian, T. (2019). MinAtar: An Atari-inspired testbed for more efficient reinforcement

learning experiments. arXiv preprint arXiv:1905.03176. (p. 47.)

Young, K., Wang, B., and Taylor, M. E. (2019). Metatrace actor-critic: Online step-size tuning
by meta-gradient descent for reinforcement learning control. In Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence. (p. 28.)

Zagoruyko, S. and Komodakis, N. (2017). Paying more attention to attention: Improving the

147

performance of convolutional neural networks via attention transfer. In International Conference

on Learning Representations. (p. 27.)

Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of context-dependent processing

in neural networks. Nature Machine Intelligence. (p. 34.)

Zenke, F.| Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence. In

International Conference on Machine Learning. (pp. 34 and 35.)

Zha, D., Xie, J., Ma, W., Zhang, S., Lian, X., Hu, X., and Liu, J. (2021). DouZero: Master-
ing DouDizhu with self-play deep reinforcement learning. International Conference on Machine

Learning. (pp. 1 and 100.)

Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., and Ma, K. (2019a). Be your own teacher:
Improve the performance of convolutional neural networks via self distillation. In Proceedings of

the IEEE/CVF international conference on computer vision. (p. 27.)

Zhang, S. (2018). Modularized implementation of deep RL algorithms in PyTorch. https://

github.com/ShangtongZhang/DeepRL. (p. 113.)

Zhang, S., Laroche, R., van Seijen, H., Whiteson, S., and Tachet des Combes, R. (2022). A deeper
look at discounting mismatch in actor-critic algorithms. In Proceedings of the 21st International

Conference on Autonomous Agents and Multiagent Systems. (p. 13.)

Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019b). Deep learning based recommender system: A

survey and new perspectives. ACM Computing Surveys. (p. 1.)

Zhang, Y., Khanduri, P., Tsaknakis, I., Yao, Y., Hong, M., and Liu, S. (2024). An introduction
to bilevel optimization: Foundations and applications in signal processing and machine learning.

IEEFE Signal Processing Magazine. (p. 27.)

Zhao, W.-Y., Guan, X.-Y., Liu, Y., Zhao, X., and Peng, J. (2019). Stochastic variance reduction

for deep g-learning. In Proceedings of the AAAI Conference on Artificial Intelligence. (p. 2.)

148

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., and Tang, J. (2018). Deep reinforcement learning
for page-wise recommendations. In Proceedings of the 12th ACM Conference on Recommender

Systems. (pp. 1 and 100.)

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., and Li, Z. (2018). DRN: A deep
reinforcement learning framework for news recommendation. In Proceedings of the 2018 World

Wide Web Conference. (pp. 1 and 100.)

Zhou, D., Ye, M., Chen, C., Meng, T., Tan, M., Song, X., Le, Q., Liu, Q., and Schuurmans,
D. (2020). Go wide, then narrow: Efficient training of deep thin networks. In International

Conference on Machine Learning. (p. 63.)

149

	Introduction
	Motivation and Objective
	Approaches and Contributions

	Background
	Markov Decision Process
	Reinforcement Learning
	Value-Based Methods
	Policy Gradient Methods

	Deep Reinforcement Learning
	Deep Q-Network
	Proximal Policy Optimization

	Catastrophic Forgetting
	Definition
	Understanding Catastrophic Forgetting via Training Dynamics

	Knowledge Distillation
	Meta-Gradient Methods

	Memory-Efficient Reinforcement Learning with Value-Based Knowledge Consolidation
	Understanding Forgetting from an Objective-Mismatch Perspective
	Related Work
	Supervised Learning
	Reinforcement Learning

	MeDQN: Memory-Efficient Deep Q-Network
	Knowledge Consolidation
	Uniform State Sampling
	Real State Sampling

	Experiments
	The Effectiveness of Knowledge Consolidation
	Balancing Learning and Remembering
	Evaluation in Low-Dimensional Tasks
	Evaluation in High-dimensional Tasks
	An Ablation Study of Knowledge Consolidation
	A Study of Robustness to Different Buffer Sizes
	Additional Results in Atari Games

	Conclusion

	Efficient Reinforcement Learning by Reducing Forgetting with Elephant Activation Functions
	Understanding the Success and Failure of Sparse Representation
	Obtaining Sparsity with Elephant Activation Functions
	Related Work
	Architecture-Based Continual Learning
	Sparsity in Deep Learning
	Local Elasticity and Memorization

	Experiments
	Streaming Learning for Regression
	Reinforcement Learning

	Conclusion

	Learning to Optimize for Reinforcement Learning
	Learning to Optimize with Meta-Learning
	Related Work
	Optimization in Reinforcement Learning
	Learning to Optimize in Supervised Learning

	Issues in Learning to Optimize for Reinforcement Learning
	The Agent-Gradient Distribution is Non-IID
	A Vicious Spiral of Bilevel Optimization

	Optim4RL: A Learned Optimizer for Reinforcement Learning
	Pipeline Training
	Improving the Inductive Bias of Learned Optimizers

	Experiments
	Learning an Optimizer for RL from Scratch
	Toward a General-Purpose Learned Optimizer for RL
	Achieving Robust Training and Strong Generalization

	Conclusion

	Model-free Policy Learning with Reward Gradients
	Only Model-Based Methods Use Reward Gradients So Far
	Reward Policy Gradient Theorem
	A Reward Policy Gradient Algorithm Based on PPO
	Experiments
	A Bias-Variance Analysis of the RPG Estimator
	Benefits and Drawbacks of Reward Gradients
	The Benefit of Knowing the Reward Function
	Evaluation on MuJoCo Tasks

	Discussion
	Conclusion

	Conclusion
	Summary of Contributions
	Limitations and Future Directions
	Final Discussion

	References

